linear algebra
play

Linear Algebra Chapter 9: Complex Scalars Section 9.2. Matrices and - PowerPoint PPT Presentation

Linear Algebra Chapter 9: Complex Scalars Section 9.2. Matrices and Vector Spaces with Complex ScalarsProofs of Theorems April 14, 2018 () Linear Algebra April 14, 2018 1 / 21 Table of contents Page 472 Number 8 1 Page 473 Number 10


  1. Linear Algebra Chapter 9: Complex Scalars Section 9.2. Matrices and Vector Spaces with Complex Scalars—Proofs of Theorems April 14, 2018 () Linear Algebra April 14, 2018 1 / 21

  2. Table of contents Page 472 Number 8 1 Page 473 Number 10 2 Theorem 9.2. Properties of the Euclidean Inner Product 3 Page 473 Number 24 4 Page 473 Number 28 5 Theorem 9.3. Properties of the Conjugate Transpose 6 Page 471 Example 9 7 Page 474 Number 34 8 Page 474 Number 38 9 () Linear Algebra April 14, 2018 2 / 21

  3. Page 472 Number 8 Page 472 Number 8   i 1 − i 1 + i Page 472 Number 8. Find A − 1 if A =  . 0 1 i  1 − i − i 1 − i Solution. We augment A with I and use the same technique introduced in Section 1.5, “Inverses of Square Matrices”:  1 − i 1 + i 1 0 0  i [ A | I ] = 0 1 i 0 1 0   1 − i − i 1 − i 0 0 1   1 − 1 − i 1 − i − i 0 0 R 3 → R 3 − (1 − i ) R 1 R 1 →− iR 1 � � 0 1 0 1 0 i   1 − i − i 1 − i 0 0 1 () Linear Algebra April 14, 2018 3 / 21

  4. Page 472 Number 8 Page 472 Number 8   i 1 − i 1 + i Page 472 Number 8. Find A − 1 if A =  . 0 1 i  1 − i − i 1 − i Solution. We augment A with I and use the same technique introduced in Section 1.5, “Inverses of Square Matrices”:  1 − i 1 + i 1 0 0  i [ A | I ] = 0 1 i 0 1 0   1 − i − i 1 − i 0 0 1   1 − 1 − i 1 − i − i 0 0 R 3 → R 3 − (1 − i ) R 1 R 1 →− iR 1 � � 0 1 0 1 0 i   1 − i − i 1 − i 0 0 1 − i − (1 − i )( − 1 − i ) = − i − ( − 2) 2 3 1 − 1 − i 1 − i − i 0 0 = 2 − i 5 since 0 1 i 0 1 0 1 − i − (1 − i )(1 − i ) = 1 − i − ( − 2 i ) 4 0 2 − i 1 + i 1 + i 0 1 = 1 + i 0 − (1 − i )( − i ) = 1 + i () Linear Algebra April 14, 2018 3 / 21

  5. Page 472 Number 8 Page 472 Number 8   i 1 − i 1 + i Page 472 Number 8. Find A − 1 if A =  . 0 1 i  1 − i − i 1 − i Solution. We augment A with I and use the same technique introduced in Section 1.5, “Inverses of Square Matrices”:  1 − i 1 + i 1 0 0  i [ A | I ] = 0 1 i 0 1 0   1 − i − i 1 − i 0 0 1   1 − 1 − i 1 − i − i 0 0 R 3 → R 3 − (1 − i ) R 1 R 1 →− iR 1 � � 0 1 0 1 0 i   1 − i − i 1 − i 0 0 1 − i − (1 − i )( − 1 − i ) = − i − ( − 2) 2 3 1 − 1 − i 1 − i − i 0 0 = 2 − i 5 since 0 1 i 0 1 0 1 − i − (1 − i )(1 − i ) = 1 − i − ( − 2 i ) 4 0 2 − i 1 + i 1 + i 0 1 = 1 + i 0 − (1 − i )( − i ) = 1 + i () Linear Algebra April 14, 2018 3 / 21

  6. Page 472 Number 8 Page 472 Number 8 (continued 1) Solution (continued).  1 − 1 − i 1 − i − i 0 0  R 1 → R 1 − (1 − i ) R 2 � 0 1 i 0 1 0 R 3 → R 3 − (2 − i ) R 2   0 2 − i 1 + i 1 + i 0 1   1 0 0 − i 1 + i 0  since (1 + i ) − ( − 1 − i )( i ) = 0 0 1 i 0 1 0  (1 + i ) − (2 − i )( i ) = − i 0 0 − i 1 + i − 2 + i 1   1 0 0 − i 1 + i 0 R 2 → R 2 + R 3 � 0 1 0 2 + i − 1 + i 1   0 0 − i 1 + i − 2 + i 1   1 0 0 − i 1 + i 0 R 3 → iR 3  . � 0 1 0 2 + i − 1 + i 1  0 0 1 − 1 + i − 1 − 2 i i () Linear Algebra April 14, 2018 4 / 21

  7. Page 472 Number 8 Page 472 Number 8 (continued 1) Solution (continued).  1 − 1 − i 1 − i − i 0 0  R 1 → R 1 − (1 − i ) R 2 � 0 1 i 0 1 0 R 3 → R 3 − (2 − i ) R 2   0 2 − i 1 + i 1 + i 0 1   1 0 0 − i 1 + i 0  since (1 + i ) − ( − 1 − i )( i ) = 0 0 1 i 0 1 0  (1 + i ) − (2 − i )( i ) = − i 0 0 − i 1 + i − 2 + i 1   1 0 0 − i 1 + i 0 R 2 → R 2 + R 3 � 0 1 0 2 + i − 1 + i 1   0 0 − i 1 + i − 2 + i 1   1 0 0 − i 1 + i 0 R 3 → iR 3  . � 0 1 0 2 + i − 1 + i 1  0 0 1 − 1 + i − 1 − 2 i i () Linear Algebra April 14, 2018 4 / 21

  8. Page 472 Number 8 Page 472 Number 8 (continued 2)   i 1 − i 1 + i Page 472 Number 8. Find A − 1 if A =  . 0 1 i  1 − i − i 1 − i Solution (continued).   − i 1 + i 0 So A − 1 = 2 + i − 1 + i 1  . �  − 1 + i − 1 − 2 i i () Linear Algebra April 14, 2018 5 / 21

  9. Page 473 Number 10 Page 473 Number 10   − 1 + i  where A is as Page 473 Number 10. Solve the system A � z = 2 + i  1 given in Exercise 8. Solution. Since A − 1 exists as seen in Exercise 8 so, as in Theorem 1.12(iii) (from the real setting), the unique solution to the system of equations is  − 1 + i   − i 1 + i 0   − 1 + i  z = A − 1  = 2 + i 2 + i − 1 + i 1 2 + i      1 − 1 + i − 1 − 2 i 1 i () Linear Algebra April 14, 2018 6 / 21

  10. Page 473 Number 10 Page 473 Number 10   − 1 + i  where A is as Page 473 Number 10. Solve the system A � z = 2 + i  1 given in Exercise 8. Solution. Since A − 1 exists as seen in Exercise 8 so, as in Theorem 1.12(iii) (from the real setting), the unique solution to the system of equations is  − 1 + i   − i 1 + i 0   − 1 + i  z = A − 1  = 2 + i 2 + i − 1 + i 1 2 + i      1 − 1 + i − 1 − 2 i 1 i   ( − i )( − 1 + i ) + (1 + i )(2 + i ) + (0)(1) = (1 + i )( − 1 + i ) + ( − 1 + i )(2 + i ) + (1)(1)   ( − 1 + i )( − 1 + i ) + ( − 1 − 2 i )(2 + i ) + ( i )(1) () Linear Algebra April 14, 2018 6 / 21

  11. Page 473 Number 10 Page 473 Number 10   − 1 + i  where A is as Page 473 Number 10. Solve the system A � z = 2 + i  1 given in Exercise 8. Solution. Since A − 1 exists as seen in Exercise 8 so, as in Theorem 1.12(iii) (from the real setting), the unique solution to the system of equations is  − 1 + i   − i 1 + i 0   − 1 + i  z = A − 1  = 2 + i 2 + i − 1 + i 1 2 + i      1 − 1 + i − 1 − 2 i 1 i   ( − i )( − 1 + i ) + (1 + i )(2 + i ) + (0)(1) = (1 + i )( − 1 + i ) + ( − 1 + i )(2 + i ) + (1)(1)   ( − 1 + i )( − 1 + i ) + ( − 1 − 2 i )(2 + i ) + ( i )(1) () Linear Algebra April 14, 2018 6 / 21

  12. Page 473 Number 10 Page 473 Number 10 (continued)   − 1 + i  where A is as Page 473 Number 10. Solve the system A � z = 2 + i  1 given in Exercise 8. Solution (continued). . . .  ( − i )( − 1 + i ) + (1 + i )(2 + i ) + (0)(1)  A − 1 = (1 + i )( − 1 + i ) + ( − 1 + i )(2 + i ) + (1)(1)   ( − 1 + i )( − 1 + i ) + ( − 1 − 2 i )(2 + i ) + ( i )(1)  (1 + i ) + (1 + 3 i ) + (0)   2 + 4 i   =  . = ( − 2) + ( − 3 + i ) + (1) − 4 + i   ( − 2 i ) + ( − 5 i ) + ( i ) − 6 i � () Linear Algebra April 14, 2018 7 / 21

  13. Page 473 Number 10 Page 473 Number 10 (continued)   − 1 + i  where A is as Page 473 Number 10. Solve the system A � z = 2 + i  1 given in Exercise 8. Solution (continued). . . .  ( − i )( − 1 + i ) + (1 + i )(2 + i ) + (0)(1)  A − 1 = (1 + i )( − 1 + i ) + ( − 1 + i )(2 + i ) + (1)(1)   ( − 1 + i )( − 1 + i ) + ( − 1 − 2 i )(2 + i ) + ( i )(1)  (1 + i ) + (1 + 3 i ) + (0)   2 + 4 i   =  . = ( − 2) + ( − 3 + i ) + (1) − 4 + i   ( − 2 i ) + ( − 5 i ) + ( i ) − 6 i � () Linear Algebra April 14, 2018 7 / 21

  14. Theorem 9.2. Properties of the Euclidean Inner Product Theorem 9.2 Theorem 9.2. Properties of the Euclidean Inner Product. w ∈ C n and let z be a complex scalar. Then: Let � u ,� v , � (1) � � u ,� u � ≥ 0 and � � u ,� u � = 0 if and only if � u = 0, (2) � � u ,� v � = � � v ,� u � , (3) � ( � u + � v ) , � w � = � � u , � w � + � � v , � w � , (4) � � w , ( � u + � v ) � = � � w ,� u � + � � w ,� v � , (5) � z � u ,� v � = z � � u ,� v � and � � u , z � v � = z � � u ,� v � . u = [ u 1 , u 2 , . . . , u n ] ∈ C n we have Proof. (1) (Page 473 Number 16) For � u � = u 1 u 1 + u 2 u 2 + · · · + u n u n = | a 1 | 2 + | u 2 | 2 + · · · + | u n | 2 ≥ 0 since � � u ,� each | u k | 2 is a nonnegative real number. () Linear Algebra April 14, 2018 8 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend