generation of intense thz pulses using ultra short high
play

Generation of intense THz pulses using ultra-short, high-brightness - PowerPoint PPT Presentation

Generation of intense THz pulses using ultra-short, high-brightness electron bunches Jom Luiten 8 Oct 2009 John Adams accelerator institute 1 Coherence & Quantum Technology (CQT) Willem Op t Root PhD student Technical support:


  1. Generation of intense THz pulses using ultra-short, high-brightness electron bunches Jom Luiten 8 Oct 2009 John Adams accelerator institute 1

  2. Coherence & Quantum Technology (CQT) Willem Op ‘t Root – PhD student Technical support: Peter Smorenburg – PhD student Bas van der Geer – Pulsar Physics (GPT) Eddy Rietman Ad Kemper Marieke de Loos – Pulsar Physics (GPT) Harry van Doorn Marnix van der Wiel – former group leader NL Foundation for Fundamental Research on Matter 8 Oct 2009 John Adams accelerator institute 2

  3. Outline Part I: RF photogun • technology • ultra-short bunches 8 Oct 2009 John Adams accelerator institute 3

  4. Outline Part I: RF photogun Part II: THz generation • technology • free-space CTR THz • ultra-short bunches • THz plasmons on a wire 8 Oct 2009 John Adams accelerator institute 4

  5. Part I: RF photogun 8 Oct 2009 John Adams accelerator institute 5

  6. RF photoguns: the brightest pulsed electron sources... • U = 3-5 MeV • Q = 0.1-1 nC I = 0.1-1 kA • τ ≤ 1 ps • ε n ≤ 1 mm·mrad Injector X-FEL... SLAC, DESY, ... 8 Oct 2009 John Adams accelerator institute 6

  7. RF photoguns: the brightest pulsed electron sources... • U = 3-5 MeV • Q = 0.1-1 nC I = 0.1-1 kA • τ ≤ 1 ps • ε n ≤ 1 mm·mrad ...injector LWA... TU/e, Strathclyde, EuroLeap... 8 Oct 2009 John Adams accelerator institute 7

  8. RF photoguns: the brightest pulsed electron sources... • U = 3-5 MeV • Q = 0.1-1 nC I = 0.1-1 kA • τ ≤ 1 ps • ε n ≤ 1 mm·mrad ...ultrafast electron diffraction... TU/e, UCLA, BNL, ... 200 nm Ti foil, Musumeci et al., UCLA 8 Oct 2009 John Adams accelerator institute 8

  9. RF photoguns: the brightest pulsed electron sources... • U = 3-5 MeV • Q = 0.1-1 nC I = 0.1-1 kA • τ ≤ 1 ps • ε n ≤ 1 mm·mrad ... intense THz pulses. 8 Oct 2009 John Adams accelerator institute 9

  10. RF photoguns: the brightest pulsed electron sources... Pulsed laser photoemission... λ /2 3 GHz ( λ =10 cm) resonant cavity 8 Oct 2009 John Adams accelerator institute 10

  11. RF photoguns: the brightest pulsed electron sources... ...and RF acceleration. RF field strength ~100 MV/m, limited by vacuum breakdown λ /2 3 GHz ( λ =10 cm) resonant cavity 8 Oct 2009 John Adams accelerator institute 11

  12. RF photoguns: the brightest pulsed electron sources... ...and RF acceleration. RF field strength ~100 MV/m, limited by vacuum breakdown λ /2 3 GHz ( λ =10 cm) resonant cavity 8 Oct 2009 John Adams accelerator institute 12

  13. RF photoguns: the brightest pulsed electron sources... ...and RF acceleration. RF field strength ~100 MV/m, limited by vacuum breakdown λ /2 3 GHz ( λ =10 cm) resonant cavity 8 Oct 2009 John Adams accelerator institute 13

  14. RF photoguns: the brightest pulsed electron sources... ATF-BNL-UCLA 1.6 cell photogun 8 Oct 2009 John Adams accelerator institute 14

  15. TU/e approach: Emittance growth due to non-linear acceleration fields: • full cylindrical symmetry single-diamond turning • no tuning plungers • on-axis RF coupling Emittance growth due to space-charge fields: • space-charge blow-out at cathode • ideally: ellipsoidal bunches • 100 fs photoemission of 100 pC in 100 MV/m 8 Oct 2009 John Adams accelerator institute 15

  16. Laser Shaped fs laser pulse... intensity y x 1 mm surface charge density distribution: ( ) σ = σ − 2 ( ) 1 r r R 0 Luiten et al., PRL 93 , 094802 (2004) 8 Oct 2009 John Adams accelerator institute 16

  17. ...evolution into uniform ellipsoid . → linear & reversible Coulomb expansion 1 mm Luiten et al., PRL 93 , 094802 (2004) 8 Oct 2009 John Adams accelerator institute 17

  18. 2nd generation TU/e gun: • Elliptical irises – Highest field strength on cathode; • Cavity parts are clamped, not braized – Easily replaced; • Copper cavity inside stainless vacuum can. 8 Oct 2009 John Adams accelerator institute 18

  19. 2nd generation TU/e gun: Elliptical irises: Highest field strength on cathode 40 30 R [mm] 20 10 0 100 50 Ez [MV/m] 0 -50 -100 0 10 20 30 40 50 60 70 80 90 100 z [mm] GPT 8 Oct 2009 John Adams accelerator institute 19

  20. 2nd generation TU/e gun: Clamped construction: cavity parts cathode plate first (half) cell second cell 8 Oct 2009 John Adams accelerator institute 20

  21. 2nd generation TU/e gun: Clamped construction: cavity parts single-diamond turning 8 Oct 2009 John Adams accelerator institute 21

  22. 2nd generation TU/e gun: Clamped construction: assembled cavity parts 8 Oct 2009 John Adams accelerator institute 22

  23. 2nd generation TU/e gun: Clamped construction: cavity inside stainless steel vacuum can 8 Oct 2009 John Adams accelerator institute 23

  24. 2nd generation TU/e gun: Assembled gun: Solenoid around cavity 8 Oct 2009 John Adams accelerator institute 24

  25. 2nd generation TU/e gun: Entire setup: gun & beamline 8 Oct 2009 John Adams accelerator institute 25

  26. 2nd generation TU/e gun: RF characterization: resonances f 0 =2.9980 GHz π -mode f 0 =2.9918 GHz 0-mode 8 Oct 2009 John Adams accelerator institute 26

  27. 2nd generation TU/e gun: RF characterization: on axis field profile 1 Superfish ♦ measured 0,8 E/Emax 0,6 0,4 0,2 0 0 20 40 60 80 100 z (mm) 8 Oct 2009 John Adams accelerator institute 27

  28. 2nd generation TU/e gun: RF characterization: on axis field profile 1 Superfish ♦ measured 0,8 --- Superfish E/Emax 0,6 radius ±5 μ m 0,4 0,2 0 0 20 40 60 80 100 z (mm) 8 Oct 2009 John Adams accelerator institute 28

  29. 2nd generation TU/e gun: High power RF commissioning: • 80 MV/m at cathode (after one month of training) • Still occasional breakdown • 3 MeV electrons • QE ≈ 3·10 -5 → bunch charge Q max ≈ 300 pC Conclusion: clamping is OK! 8 Oct 2009 John Adams accelerator institute 29

  30. Emittance measurement: Quadrupole scan: 8 Oct 2009 John Adams accelerator institute 30

  31. Emittance measurement: Quadrupole scan: 8 Oct 2009 John Adams accelerator institute 31

  32. Emittance measurement: Quadrupole scan: 8 Oct 2009 John Adams accelerator institute 32

  33. Emittance measurement: Quadrupole scan: Q = 5 pC ε n = 0.40(5) mm·mrad 8 Oct 2009 John Adams accelerator institute 33

  34. Emittance GPT simulation: Quadrupole scan: Q = 5 pC, 10 6 particles Phase-space at focal point 1.0 500 0.5 400 stdx [micron] px [keV/c] 300 0.0 200 -0.5 ε n = 0.6 mm·mrad 100 -1.0 0.2 0.3 0.4 0.5 0.6 0.7 -1.0 -0.5 0.0 0.5 1.0 80000 fx [m] x [mm] GPT GPT 60000 Rms: 0.15 mm Count Peak fit: 0.10 mm 40000 • very good agreement 20000 • still space-charge dominated 1.7 % 1.7 % 0 -1.0 -0.5 0.0 0.5 1.0 8 Oct 2009 John Adams accelerator institute 34 x [mm] GPT

  35. Emittance measurement: Quadrupole scan: Q = 70 pC ε n = 1. 0(1) mm·mrad 8 Oct 2009 John Adams accelerator institute 35

  36. Bunch length measurement: Coherent Transition Radiation (CTR) 8 Oct 2009 John Adams accelerator institute 36

  37. Bunch length measurement: Coherent Transition Radiation (CTR) Q = 70 pC τ bunch < 2 ps 8 Oct 2009 John Adams accelerator institute 37

  38. Arrival time jitter: Coherent Transition Radiation (CTR) 20 fs jitter RF phase 8 Oct 2009 John Adams accelerator institute 38

  39. Performance TU/e gun: • charge Q = 70 pC; peak current 35-140 A • measured bunch length τ < 2 ps; • at gun exit τ < 0.5 ps (GPT); • arrival time jitter < 20 fs; • normalized emittance ε n = 1 mm·mrad. LCLS injector (Akre et al., PRSTAB 11, 030703, 2008) • normalized emittance: ε n = 1 mm·mrad • peak current: 100 A ( 1 nC / 10 ps ) 8 Oct 2009 John Adams accelerator institute 39

  40. Part II: THz generation 8 Oct 2009 John Adams accelerator institute 40

  41. THz radiation "THz gap" Electronics Photonics, optics Frequency 8 Oct 2009 John Adams accelerator institute 41

  42. THz radiation Many materials transparent: “T-rays” Medical applications: skin cancer diagnostics Security: body scan Science: charge carriers dynamics, molecular physics, imaging of biological tissues, ... 8 Oct 2009 John Adams accelerator institute 42

  43. Single-cycle THz pulses generated by Coherent Transition Radiation (CTR) Goal: E THz = 10-100 MV/m ~ 1 ps BW > 1 THz 8 Oct 2009 John Adams accelerator institute 43

  44. Single-cycle THz pulses generated by Coherent Transition Radiation (CTR) 8 Oct 2009 John Adams accelerator institute 44

  45. Single-cycle THz pulses generated by Coherent Transition Radiation (CTR) • ~0.1 eV per electron • Coherent addition → ~N 2 → many μ J per bunch • bunch length 1 ps → > 1 THz bandwidth 8 Oct 2009 John Adams accelerator institute 45

  46. Single-cycle THz pulses generated by Coherent Transition Radiation (CTR) 8 Oct 2009 John Adams accelerator institute 46

  47. Single-cycle THz pulses CTR : radially polarized CCD A CCD B Expected signal 8 Oct 2009 John Adams accelerator institute 47

  48. Single-cycle THz pulses generated by Coherent Transition Radiation (CTR) polarizer CCD A 8 Oct 2009 John Adams accelerator institute 48

  49. Single-cycle THz pulses generated by Coherent Transition Radiation (CTR) polarizer CCD B 8 Oct 2009 John Adams accelerator institute 49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend