g
play

g 0 g ground excited H JC = ~ ! a a + 2 z + g + a + a - PowerPoint PPT Presentation

Waveguide QED: Quantum Transport of Strongly Correlated Photons Harold Baranger, Duke University, with Huaixiu Zheng and Dan Gauthier Topic: 1D bosons [photons, plasmons, cold atoms, ...] interacting with two-level systems (2LS) [atom, qubit,


  1. Waveguide QED: Quantum Transport of Strongly Correlated Photons Harold Baranger, Duke University, with Huaixiu Zheng and Dan Gauthier Topic: 1D bosons [photons, plasmons, cold atoms, ...] interacting with two-level systems (2LS) [atom, qubit, quantum dot, ...] Outline: • motivation : quantum optics, quantum information, phases of “interacting” light • experimental systems: optical, superconducting qubits, nanowires, ... • simple model → surprising result, 2 photon correlated state • our results: photon blockade using a 4 level system; 2 qubits • conclusions and speculations...

  2. Motivation: Quantum Optics Quantum Optics: Two level atom in a cavity: cavity QED 2 3 √ 2 g 2 1 k g 0 1 g ω ✏ 0 g ground excited H JC = ~ ! a † a + ✏ 2 � z + g � + a + a † � − � � Jaynes-Cummings model: strong coupling shifts the modes of the cavity → no longer an evenly spaced harmonic osc. ladder → nonlinear spacing produces photon blockade ~ effective interaction between photons Does coupling to a continuum of modes bring in something new?

  3. Motivation: Flying Qubits for Quantum Networks a b from H. J. Kimble, Quantum quantum “Quantum Internet”, node Nature 2008 Scheme being developed based on cavity QED: c quantum Node A g channel in ( t ) W Y Node B B k Y out ( t ) W A Is there a cavity-free way to do this?

  4. 1D Waveguide QED: Strong Coupling (1D)%Waveguide.QED% two level system Γ a + a † � � � � Dipole'coupling' | g ih e | + | e ih g | ⇣ ⌘ X X ~ ! k a † a † k a k + ✏ | e ih e | + k | g ih e | + a k | e ih g | H = V “rotating wave approximation”: neglect 2 terms in the dipole coupling; Γ / ✏ ⌧ 1 valid when

  5. Waveguide QED: Variety of Potential Physical Systems photonic crystal + defect nanofiber + atom guided modes nanofiber atoms [from LeKien & Hakuta, PRA 2008] [from Shen & Fan, PRL 2007] superconducting qubit + stripline plasmonic wire + quantum dot Out transmission a Emitter–surface-plasmon coupling line Transmission- line cavity Surface-plasmon–waveguide coupling Losses Tapered nanowire C o o Cooper-pair p e r - p a i r Dielectric waveguide o m b o x a t box 10 µ m 10 GHz in [Schoelkopf & Girvin, Nature 2008] [Chang, Sorensen, Demler & Lukin, Nat.Phys. 2007]

  6. Experimental Systems: Example 1: Atom + Dielectric P T P in z r ( t ) ρ P R φ g / 0 γ 0 40 80 Observed strong interaction of single atom and single photon. [from Alton, et al. (Kimble group) N.Phys. 2010]

  7. Experimental Systems: Example 2: Quantum Dot + Nanowire InAs quantum dot embedded in GaAs nanowire: P=9 b 2 θ α 2.5 µ m HE 11 β /2 β /2 SiO 2 r m 200 nm Au [from Claudon, et al. (Grenoble CEA group), N.Photonics 2010 & PRL 2011]

  8. Experimental Systems: Example 3: Superconducting Qubit Rabi Splitting! Cooper pair box [from Wallraff, et al. (Yale group) Nature 2004]

  9. Experimental Systems: Example 3: Superconducting Qubit A) V R V T 2 ( τ ) g V in B) 2 (0) 2.4 g P 2.4 320 um 2.2 -129dBm 2.2 -128dBm 2.0 2.0 10um -127dBm 1.8 -125dBm 1.8 1.6 C) 2 ( τ ) 1 g 1.4 1.0 B) ω p R 1.6 T 1.2 1 2 1.0 1.4 0.8 -128 -124 -120 Data 0 2 ( τ ) g P [dBm] 1.2 RT 0.6 Theory T 1.0 Amplifier 0.4 -20dB 4.2K LPF -20dB -150 -100 -50 0 50 100 150 0.2 DC Block -10dB 1K -10dB τ [ ] ns 0.0 -30dB BPF -30dB -140 -130 100nm -120 -110 50mK ∼ P [dBm] P > 20 Cc “Atom” [Hoi, et al. (Delsing/Wilson group) arXiv 2012)]

  10. resonant plane wave states inject 2 photons in uncorrelated Example result (Shen&Fan, PRL-PRA 2007) : ➔ generates a strong correlation between the photons Strong coupling ➔ 1 photon near 2LS strongly influences others 2 Photon States: Correlation (handwaving...) * connected to stimulated emission (bosons!) ... photons are exponentially correlated part of outgoing wave: the 2 it is in excited state. depends on whether Scattering by 2LS

  11. Waveguide QED: Waveguide + Two-Level System (2LS)  � Z R ( x ) d L ( x ) d 1D continuum a † dxa R ( x ) − a † H = − i ~ c dxa R ( x ) dx (bosons) + +( ✏ � i Γ 0 ) | "ih" | 2 level system (described by Pauli matrices) h i + σ + a R (0) + σ − a † R (0) + σ + a L (0) + σ − a † + V L (0) coupling caveat: strong coupling but not “ultra-strong” σ + a † → ¡ rotating wave approximation, so neglect R (0) ( ⇒ makes exact solution straight forward) 1. number of “excitations” conserved (no “Kondo effects”...) 2. L-R symmetry ⇒ make even and odd combination ⇒ only even mode couples to 2LS (and it is chiral...) a † R ( 3. bosonic statistics of is crucial!

  12. Waveguide QED (2LS): 2-Photon Scattering State 1. Scattering wave states for incoming even plane waves Z n=1 dx g 1 ( x ) a † | ψ 1 i = e ( x ) | 0 , g i + e 1 | 0 , e i can satisfy with plane waves n=2 Z Z dx 1 dx 2 g 2 ( x 1 , x 2 ) a † e ( x 1 ) a † dx e 2 ( x ) a † | ψ 2 i = e ( x 2 ) | 0 , g i + e ( x ) | 0 , e i g 2 ( x 1 , x 2 ) e 2 ( x ) no plane wave solution: can’t make and consistent n e i ( k 1 x 1 + k 2 x 2 ) + Be i ( k 1 + k 2 ) x 2 e − Γ | x 2 − x 1 | o g 2 ( x 1 , x 2 ) ∼ Sym correlated state need a continuum for this 2. Transform back to Left-Right basis 3. Scattering of wave-packet with definite photon number: Fock state use a Gaussian wave-packet-- spectral width σ 4. Scattering of coherent state: mean photon number

  13. Waveguide QED (2LS): n=4 variety of more complicated correlations: 1-photon transmission: 1 P (1) 0.8 incoming photon at R P (1) resonance with the 2LS; 0.6 L P (1) Gaussian wave-packet 0.4 decay rate from 2LS 0.2 into waveguide: 0 Γ ≡ 2 V 2 /c 0 2 4 6 8 10 � / �

  14. Waveguide QED (2LS): 2-Photon Transmission 1 1 PW PW corr. corr. BS BS RR RL P (2) P (2) 0.5 0.5 0 0 large correlated 0 5 10 0 5 10 state effects!! 1 1 P (2) RR PW P (2) 0.5 corr. P (2) RL P (2) BS LL 0.5 P (2) LL 0 − 0.5 0 0 5 10 0 5 10 � / � � / � [coupling strength] PW = “plane wave” corr. = correlated state + interference part RR = right-right RL = right-left (1 photon transmitted, 1 reflected)

  15. � � � � � � − Waveguide QED (2LS): Two-point Correlation � � � � − R ( x 2 � x 1 ) = h out α | a † R ( x 2 ) a R ( x 2 ) a † R ( x 1 ) a R ( x 1 ) | out α i g (2) h out α | a † R ( x 1 ) a R ( x 1 ) | out α i 2 10 0 5 10 10 (f) � =0.4 � (2) (x 2 − x 1 ) � � � � 5 0.5 g R uncorrelated ⇒ 0 10 0 5 10 10 0 � (x 2 − x 1 ) � (x − x ) � � bunching! anti-bunching! [Huaixiu Zheng] − �

  16. − − − − − − − − − − − − − − Spectral Entanglement: Two-Photon State − − − − − − − − − − − − − − 3 x 10 1 2.5 1 10 fRR fLL 2 F LL 8 F RR 0.5 0.5 1.5 6 k2 − k0 k2 − k0 0 − 0 − 1 4 − − 0.5 − − 0.5 0.5 2 − − 1 0 − − 1 0 − − − 1 − 0.5 0 0.5 1 − − − 1 − 0.5 0 0.5 1 − k1 − k0 − k1 − k0 Spectrally entangled photon pair ¡ ¡ ¡ ¡ (possible large-alphabet System'parameters:' quantum communication) Γ=9,%Γ ’=1,' δ=0,%%σ=0.01 ' 0.1 [Huaixiu Zheng] − − − − − − − − − − − − − − − − − − − − − − − −

  17. Waveguide QED: Four-Level System (4LS) Consider a more complicated local quantum system: Why?? 1. would like “classic” effect of interacting photons, such as photon blockade 2. want to change number statistics-- non-classical light classical controllable field couples levels 2 and 3: made in optics and supercond. qubits [Majer et al., PRL 2005] [Huaixiu Zheng]

  18. Waveguide QED: Four-Level System (4LS) Z R ( x ) d L ( x ) d h i a † dxa R ( x ) � a † 1D continuum H = dx ( � i ) ~ c dxa L ( x ) + Z [ a † R ( x ) + a † � � � + dx ~ V � ( x ) L ( x )] | 1 ⇤⇥ 2 | + | 3 ⇤⇥ 4 | + h . c . coupling + 4 ⇥ j � i Γ j | j ⇤⇥ j | + ~ Ω ⇣ ⌘ ⇣ ⌘ X + | 2 ⇤⇥ 3 | + h . c . ~ 2 2 j =2 4 level system

  19. Multi-Photon: Cavity-free Photon Blockade true 2-photon transmission compared ?" to 2 independent photons: detuning from 4LS: δ = 0 loss in 4LS: Γ 0 = 1 photon blockade wavepacket spectral width: σ = 0 . 2 [coupling strength] [Huaixiu Zheng]

  20. Toward a Single Photon Source (a) (b) log 10 [P 0 /P 0,Poisson ] log 10 [P 1 /P 1,Poisson ] n=0 n=1 Number statistics 4 4 0 0.1 of transmitted pulse?? − 0.02 0 � 2 2 − 0.1 Inject coherent − 0.04 state pulse with 0 0 0 10 20 0 10 20 1 photon on avg. (c) (d) log 10 [P 2 /P 2,Poisson ] log 10 [P 3 /P 3,Poisson ] n=2 n=3 4 2 4 1 1 0 2 � 2 0 − 1 − 1 0 0 0 10 20 0 10 20 � � sub-Poissonian statistics: multi-photon states are suppressed single photon source important for secure quantum communication

  21. Two@Qubit'Problem ' ' • Minimal'system'for'scalable'quantum'networks' • Rela6vely'unexplored'for'1D'waveguide'case' • So'far,'no'analy6c'solu6on'found@@@in'sharp'contrast'to' single@qubit'case'

  22. Numerical(Green(Func7on(Method(I( • Original(Hamiltonian( • Hamiltonian(with(bosonic(sites(

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend