g factor measurements of high spin isomers and condensed
play

g -Factor measurements of high-spin isomers and condensed matter - PowerPoint PPT Presentation

g -Factor measurements of high-spin isomers and condensed matter studies using spin-aligned isomeric beams Hiroshi Watanabe Applied Nuclear Physics Laboratory, The Institute of Physical and Chemical Research Outline Introduction g


  1. g -Factor measurements of high-spin isomers and condensed matter studies using spin-aligned isomeric beams Hiroshi Watanabe Applied Nuclear Physics Laboratory, The Institute of Physical and Chemical Research Outline • Introduction • g -Factor measurements of the high-spin isomers in N = 83 isotones • Condensed matter studies with spin-aligned isomeric beams

  2. Overview of nuclear isomers 5 f electrons Overview of nuclear isomers presented over the chart of nuclei presented over the chart of nuclei Octupole Pb (Fission isomers) 4 f electrons Oblate + 126 Octupole Prolate 4 d electrons (K-isomers) Sn 3 d electrons Oblate 82 Spherical A large number of isomeric states Protons Ni with various lifetimes and spins Ca 50 have been discovered so far ! O 20 28 He 2 8 Neutrons Nuclear isomerism Spin Spin selection orientation rules

  3. Spin-oriented isomers as probes for studies of nuclear moments and solid-state physics B ext ω L Oscillation curve 0.6 exp (- t / τ N ) 0.4 0.2 R ( t ) 0 -0.2 m a e B 1 / ω L -0.4 -0.6 0 500 1000 1500 2000 2500 3000 t [ns] Larmor frequency Nuclear structure β known • Configuration of the isomer µ β Isomeric g -factor g B ( T ) ω = N N ext • Effect of shell-closure L h Local susceptibility g known Material science + µ g ( J 1 ) B ( 0 ) χ = β − = • Local moment J B ( T ) 1 loc 3 k T B Nuclear relaxation time 4 f electron spin fluctuation • Exchange + µ h π 2 ( J 1 ){ g B ( 0 ) } 2 4 τ = τ N N τ = ε − 1 interaction − { D ( ) J ( T )} 2 k T 1 N J J c F cf B J h

  4. g -Factor measurements of the high-spin isomers in N = 83 isotones Systematics of the high-spin isomers in N = 83 isotones 49/2+ 35ns 49/2+ 0.95us 9 (27+) 10ns (27+) 1.1us (27+) >2us 49/2+ 0.51us 49/2+ 28ns 8 7 Excitation Energy [MeV] 6 5 4 27/2- 27ns 3 21/2+ 4ns 27/2- 510ms 2 11- 4.5ns 13/2+ 6.8ns 13/2+ 12ns 13/2+ 12.5ns 13/2+ 22ns 1 9+ 0.71us 9+ 235us 9+ 2m 349d 7/2- 340d 4.59d 38h 4m 7/2- 5- 4- 7/2- 7/2- 0 143 Nd 144 Pm 145 Sm 146 Eu 147 Gd 143 Tb 149 Dy

  5. Properties of the high-spin isomer in 147 Gd O.Häusser et.al., Nucl. Phys. A379 (1982) 287. i 13/2 h 9/2 d 3/2 f 7/2 Experimental g -factor h 11/2 64 82 Isomeric configuration [ π( h 11/2 2 )ν( f 7/2 h 9/2 i 13/2 ) ] 49/2 + d 5/2 d 3/2 g 7/2 s 1/2 0 DIPM calc. Experimental Q -moment -0.02 exp. -0.04 -0.06 Sphere Deformation -0.08 -0.1 β = -0.19 β -0.12 -0.14 -0.16 -0.18 ※ These properties are well reproduced Oblate -0.2 by the DIPM calculation. -0.22 0 5 10 15 20 25 30 35 40 Spin [ ħ ] Does the other N = 83 high-spin isomers have the same properties as the 147 m Gd ?

  6. Configuration predicted by the DIPM calc. 149 Dy Level Structure 47 49 = = h h I I 2 2 E ex (MeV) N =82 core excitation Z =64 core excitation 14 834* 613* 1137* 915* 13 335.1 303.1 197.7 543.7 602.8 861.0 802.0 848.2 12 1354.3 1008.6 704.2 750.4 Oblate shape Spherical shape 11 962.1* β = -0.041 β = -0.166 10 456.5 829.3 667.5 294.2 9 595.4 E ex = 8.52MeV, T 1/2 = 28ns High-Spin Isomer (49/2+) 249* 475* 8 861* 1232.5 635* 43/2+ 253.3 491.1 7 350.3 168.1 41/2+ 213.0 479.2 1064.1 742.1 1408.9 1143.5 39/2+ 930.5 6 580.8 430.3 700.3 269.8 37/2+ 525.4 Z =64 core excitation 254.9 5 35/2+ 1393.5 1138.2 1337.7 199.6 4 33/2+ 239.8 31/2+ 29/2+ 984.9 3 510 ms 110.9 27/2- 21/2+ proton 299.0 2 proton 2 17/2+ 1178.8 146 Gd (11/2-) + proton hole 12.5 ns 1 13/2+ 1 neutron 1584.0 1073.0 neutron 4.23 min 0 7/2-

  7. 143 Nd Level Structure Angular distribution Linear polarization E ex = 8.98MeV, T 1/2 = 35ns, I π = 49/2 + Configuration predicted by the DIPM calc. 49 = h I 2 Z = 64, N =82 core excitation Oblate shape β = -0.176

  8. Experimental details RIKEN Accelerator Research Facility (RARF) Injector : RIKEN Heavy-ion Linac (RILAC) Main accelerator : K540 RIKEN Ring Cyclotron (RRC) Production of the high-spin isomer in 149 Dy � Projectile : 132 Xe 7.0 MeV/u, T = 1 μ s � Target : natural Mg of 6.0 mg/cm 2 thickness Production of the high-spin isomer in 143 Nd � Projectile : 136 Xe 7.6 MeV/u → 6.5 MeV/u, T = 1 μ s � Target : 12 C of 1.7 mg/cm 2 thickness

  9. Experimental setup for the measurement of g -factors Ge detector ε γ = 0.04% for 1MeV Target Vacuum Ar gas cell Ar Gas Beam 90° Pb Stopper Dipole Magnet Pb Shield ① Inverse reaction & Recoil shadow method Only γ rays emitted through isomeric states can be detected ② Spin relaxation control ( Ⅰ ) Recoil into Gas Suppress the nuclear spin relaxation during the flight ( Ⅱ ) Stopper heating system Make the relaxation time long after stopping

  10. Experimental Technique γ -ray Time-Differential Perturbed Angular Distribution (TDPAD) technique ) ( ln 2 γ θ = − ⋅ θ Intensity of ray : N ( t , , B ) N exp t W ( t , , B ) γ γ eff 0 eff T 1 / 2 ∑ θ = γ θ − ω ⋅ Angular distributi on : W ( t , , B ) B ( I ) A ( ) P [cos( t )] γ γ eff k k k L k , even θ − θ + π N ( t , , B ) N ( t , / 2 , B ) θ = γ γ eff eff R ( t , , B ) B γ eff θ + θ + π N ( t , , B ) N ( t , / 2 , B ) γ γ eff eff 3 A ≅ θ − ω ⋅ ≤ 22 cos[ 2 ( t )] for k 2 γ + L 4 A 22 ω : Larmor frequency L ω h = L g factor : g µ B N eff = + = β B B B ( T ) B eff ext int int β + µ ( T ) : Paramagnet ic g ( J 1 ) B ( 0 ) β = + J B ( T ) 1 3 k T Correction Factor B

  11. Calibration of the paramagnetic field 4.5 152 Dy I = 21 isomer (present work ) 4 3.5 For Dy 3+ ion : J = 15/2, g J = 4/3 3 g·β(T) 2.5 2 1.5 calibrated with the known g -factor 1 of the isomeric state in 152 Dy 152 Dy I = 21 isomer (g = 0.55±0.06) 0.5 (produced concurrently with the 149 m Dy) β (T) : calculation (5% uncertainty) 0 0 0.001 0.002 0.003 0.004 1/T [K -1 ] For Nd 3+ ion : J = 9/2, g J = 8/11 calibrated with B (0) = 3.51(10) MG for Nd 3+ ion given by D.Riegel et al.

  12. Result for the high-spin isomer in 149 Dy 0.2 T = 328 K 0.15 0.1 ω L 0.05 T g exp β R(t) [K] [rad/ns] 0 -0.05 328 0.19(2) 6.4(9) 0.41(7) -0.1 -0.15 533 0.11(2) 3.6(5) 0.41(9) -0.2 0 10 20 30 40 50 60 g exp = 0.41(6) t [ns] 0.2 T = 533 K 0.15 0.1 Configuration (DIPM) g cal 0.05 I π R(t) 0 47/2 - π (h 11/2 3 g 7/2 -1 ) ν (i 13/2 ) 0.82 -0.05 -0.1 49/2 + π (h 11/2 2 ) ν (f 7/2 h 9/2 i 13/2 ) 0.46 -0.15 -0.2 0 10 20 30 40 50 60 * g ℓ ( π ) = 1.1, g ℓ ( ν ) = -0.03, g s = 0.6g s (free) t [ns]

  13. Result for the high-spin isomer in 143 Nd 0.4 Measured at T = 302 K 0.3 0.2 0.1 R(t) 0 -0.1 -0.2 -0.3 -0.4 0 10 20 30 40 50 60 70 80 90 100 t [ns] ω L = 0.082 ± 0.006 rad/ns g exp = 0.56 ± 0.04

  14. Experimental g -factors of the high-spin isomers in N = 83 isotones 0.65 0.6 0.55 g -factor 0.5 0.45 π (h 11/2 2 ) ν (f 7/2 h 9/2 i 13/2 ) 0.4 0.35 0.3 143 Nd 144 Pm 145 Sm 146 Eu 147 Gd 148 Tb 149 Dy Z = 64 shell-gap energies which reproduce the experimental excitation energies of the high-spin isomers in N = 83 isotones Z = 64 shell-gap energy [MeV] 2.4 2.35 2.3 2.25 2.2 2.15 2.1 2.05 2 1.95 1.9 143 Nd 144 Pm 145 Sm 146 Eu 147 Gd 148 Tb 149 Dy

  15. Condensed matter studies with spin-aligned isomeric beams 4 d atomic-shell 4 f atomic-shell Ex Ex Nucleus T1/2 I μ[nm] Q[b] Nucleus T1/2 I μ[nm] Q[b] [keV] [keV] 85Y 266 170 ns 5/2- 1.33 134Ce 3209 308 ns 10+ -1.87 1.32 88Zr 2889 1.32μs 8+ -1.81 0.51 136Ce 3096 2.2 μs 10+ -1.8 90Zr 3589 134 ns 8+ 10.84 -0.51 138Ce 3538 82 ns 10+ -1.7 91Zr 3167 3.6μs 21/2+ 9.82 -0.86 139Ce 2632 70 ns 19/2- 3.99 97Zr 1264 102 ns 7/2+ 1.37 136Pr 548 90 ns 4+ 2.3 90Nb 1881 477 ns 11- 8.78 138Nd 3172 330 ns 10+ -1.74 91Nb 2037 3.4 μs 17/2- 10.82 148Nd 3621 330 ns 10+ -1.75 92Nb 2203 167 ns 11- 9.7 142Sm 2372 170 ns 7- 0.42 1.1 90Mo 2875 1.1 μs 8+ -1.391 0.58 151Sm 92 77 ns 9/2+ -0.95 92Mo 2760 190 ns 8+ 11.3 -0.34 145Eu 716 0.49 μs 11/2- 7.46 94Mo 2956 98 ns 8+ 10.46 0.47 147Eu 635 765 ns 11/2- 7.05 93Tc 2186 10.1 μs 17/2- 10.46 148Eu 720 235 ns 9+ 6.12 93Ru 2082 2.4 μs 21/2+ 8.97 0.04 144Gd 3433 130 ns 10+ 12.76 -1.46 100Rh 75 215 ns 2+ 4.324 147Gd 8587 510 ns 49/2+ 10.9 -3.24 112+x 140 ns 7+ 4.69 158Dy 99 1.66 μs 2+ 0.72 104Rh 215.5+x 47 ns 6- 2 168Er 1094 112.5 ns 4- 0.96 96Pd 2532 2.22 μs 8+ 10.97 169Tm 316 660 ns 7/2+ 0.156 157Yb 494+x 45 ns 13/2+ -0.75

  16. Why Ce beam ? Properties of Ce-based systems Many physical phenomena, such as ferro- 4 f electrons and anti-ferromagnetism, Kondo effect, superconductivity, and heavy-fermion ε F >> E f ε F << E f behavior can take place in Ce-based compounds and alloys. The RKKY interaction Demagnetization is gives rise to various kinds caused by the of magnetic ordering. Kondo effect. T k T RKKY T k B T RKKY ~ J 2 cf D c ( ε F ) k B T K ~ exp[-1/ J cf D c ( ε F )] T N critical point Quantum ε F ≈ E f localize around itinerate in Heavy-fermion Compete the atom the crystal A.F. (Fermi liquid) J cf D c ( ε F ) CeIn 3 CeCu 2 Si 2 CeCu 6 CeRu 2 Si 2 CeNi CeAl 2 CeAl 3 CeSn 3 Heavy fermion system CeB 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend