functional brain imaging multi objective optimisation and
play

Functional Brain Imaging, Multi-Objective Optimisation and - PowerPoint PPT Presentation

Functional Brain Imaging, Multi-Objective Optimisation and Spatio-Temporal Data Mining Michle Sebag TAO, Universit Paris-Sud With Nicolas Tarrisson, Olivier Teytaud, Vojtech Krmicek, UPS Julien Lefevre, Sylvain Baillet, La


  1. Functional Brain Imaging, Multi-Objective Optimisation and Spatio-Temporal Data Mining Michèle Sebag TAO, Université Paris-Sud With Nicolas Tarrisson, Olivier Teytaud, Vojtech Krmicek, UPS Julien Lefevre, Sylvain Baillet, La Pitié-Salpétrière

  2. Motivations Functional Brain Imagery ✎ Patients, Experiments, Measures ✎ Magneto-Encephalography 1,000 measures per sensor per second.

  3. The data Spatio-temporal structure ✎ Sensors ✐ ❂ ✶ ✿✿◆ ✚ ❘ ✸ ▼ ✐ ❂ ✭ ① ✐ ❀ ② ✐ ❀ ③ ✐ ✮ ✷ ■ ✎ ✐ ✦ ❘ ❚ ❢ ❈ ✐ ❬ t ❪ ❀ t ❂ ✶ ✿✿❚ ❣ ✷ ■

  4. Overview ✎ Spatio-temporal Data Mining ✎ Multi-Objective Optimisation ✎ .. + Multi-modal Optimisation ✎ 4dMiner & Experimental Validation ✎ Discriminant Spatio-Temporal Patterns

  5. Goal Find spatio-temporal patterns ❘ ✸ ✎ Spatial region ❆ ✚ ■ ✎ Temporal interval ■ ✚ ❢ ✶ ✿✿❚ ❣ defining ❱ ✭ ❆❀ ■ ✮ ❂ ❢ ❈ ❦ ❬ t ❪ ❀ ❦ ✷ ❆❀ t ✷ ■ ❣ SUCH THAT the variance of signals within ❱ ✭ ❆❀ ■ ✮ is low and ❆ ✂ ■ is a large spatio-temporal region “active areas of the brain”

  6. Position of the problem In practice: done manually ✎ tedious ✎ non reproducible Standard approach ✶ ❂ Extract a global spatio-temporal model Independent Component Analysis Hyvarinen et al., 2001 EM-based clustering of curves Chudova et al., 2003 Markov Random Field McCallum, 2004 or, Inductive Database Mannila et al., 1997 ✷ ❂ Find specific spatio-temporal patterns from the global model 99.9 of the global model learned is useless

  7. Data Mining Goal ✎ From massive amounts of data and knowledge ✎ find novel, useful and valid knowledge Vision Ideally pervasive knowledge Actually specialized expertise The need [human] knowledge management does not scale up The opportunity huge amounts of accessible data

  8. Discussion Goals ✎ subjective (novel & useful knowledge) ✎ multi-objective (valid = precise or general ?) Requirements ✎ Scalability ✎ Flexibility ✦ tunable ✦ calibrated ✦ computational cost must be controllable any-time algorithm Zilberstein 98

  9. MEG Mining: Multi-objective optimisation Search space: Stable Spatio-Temporal Patterns ✽ ■ ❂ ❬ t ✶ ❀ t ✷ ❪ ❃ temporal interval ❁ ✐ center of the spatial region ❳ ❂ r ❃ ✿ radius of the spatial region ❞ ✇ ❂ ✭ ❛❀ ❜❀ ❝ ✮ distance weights ellipsoidal regions Objectives ✎ Temporal length ❵ ✭ ❳ ✮ ❂ t ✷ � t ✶ ✎ Spatial area ❛ ✭ ❳ ✮ ❂ ❥❱ ✭ ❳ ✮ ❥ ❂ ❥❢ ❥ ❂ ❞ ✇ ✭ ✐❀ ❥ ✮ ❁ r ❣❥ ✎ Spatio-temporal alignment ❳ ✶ ✛ ✭ ❳ ✮ ❂ ✛ ■ ✭ ✐❀ ❥ ✮ ❵ ✭ ❳ ✮ ✂ ❛ ✭ ❳ ✮ ❥ ✷❱ ✭ ❳ ✮

  10. ✛ ■ ✭ ✐❀ ❥ ✮ : I-alignment of sensors ✐ and ❥ ✏ ✑ ❥ ✖ ✐ � ✖ ❈ ■ ❈ ■ ❥ ❥ ✛ ■ ✭ ✐❀ ❥ ✮ ❂ ❁ ✐❀ ❥ ❃ ■ ✂ ✶ � ❥ ✖ ❈ ■ ✐ ❥ with t ❂ t ✶ ❈ ✐ ✭ t ✮ ✿❈ ❥ ✭ t ✮ P t ✷ ❁ ✐❀ ❥ ❃ ■ ❂ t ❂ t ✶ ❈ ✐ ✭ t ✮ ✷ ✂ P t ✷ qP t ✷ t ❂ t ✶ ❈ ❥ ✭ t ✮ ✷ ❈ ■ ✖ ❥ ❂ Average ❢ ❈ ❥ ❬ t ❪ ❀ t ✷ ■ ❣

  11. Multi-objective Optimisation Find ❆r❣▼❛① ❢❋ ✐ ❀ ✐ ❂ ✶ ❀ ✷ ✿✿✿❀ ❋ ✐ ✿ ✡ ✦ ■ ❘ ❣ ✚ Pareto domination ✽ ✐❀ ❋ ✐ ✭ ① ✮ ✔ ❋ ✐ ✭ ② ✮ ✎ ① ❁ ② iff ✾ ✐ ✵ ❋ ✐ ✵ ✭ ① ✮ ❁ ❋ ✐ ✵ ✭ ② ✮ Pareto Front ✎ Set of non dominated solutions. objects with highest quality and smallest cost... Pareto front Quality Cost

  12. An Any-time Approach Spatio-temporal data mining ✎ Monotonous criteria (variance increases with ■ and ❆ ) ✎ Antagonistic criteria (decrease ■ or ❆ to keep the variance low) Complete vs Stochastic Search ✎ For experts to look at ✎ Agregate the results of several runs Multi-Objective Evolutionary Computation Kalyan Deb 2001

  13. ☞ ✎ ✍ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✍ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✍ ✍ ✎ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✍ ✎ ✎ ✍ ✑ ✏ ✏ ✏ ✏ ✏ ✏ ✑ ✑ ✏ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✏ ✏ ✎ ✏ ✎ ✎ ✎ ✎ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✏ ✍ ✌ ✑ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ✌ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ☞ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✌ ✑ ✑ ☞ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✕ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✔ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✑ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✓ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✑ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✒ ✓ ✓ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✓ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ☞ ☞ ☞ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ☎ ☎ ✄ ✝ ✆ ✆ ✝ ✝ ✝ ✝ ✝ ✝ ✆ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✆ ✆ ☎ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✄ ✄ ✝ ✁ � � ✁ ✁ ✁ ✁ ✁ ✁ � ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ � � ✁ � � � � � � � � � � � � � � � � � � � ✁ ✁ ✄ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✄ ✄ ✂ ✂ ✁ ✂ ✁ ✁ ✁ ✁ ✁ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✝ ✝ ✝ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✡ ✡ ✡ ✡ ✡ ✡ ✠ ✠ ✡ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✡ ✡ ✠ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☛ ☞ ☛ ☛ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ✡ ☛ ✡ ✡ ✡ ✡ ☛ ☛ ☛ ☛ ✠ ✠ ✠ ✟ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✟ ✞ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✞ ✞ ✟ ✞ ✝ ✝ ✝ ✝ ✝ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✠ ✟ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✠ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✟ ✕ Mutation, ... Crossover, Selection Genitors Evolutionary Computation, the skeletton Best individual Offspring Generation Stop ? ❘ ❋ ✿ ✡ ✼✦ ■ Evaluation Replacement Parents Initialisation Evaluation

  14. Multi-objective evolutionary optimisation Find ❆r❣❖♣t ✭ ❋ ✮ Standard EC ✎ Initialisation ✎ Selection ✎ Variation (crossover, mutation) Find ❆r❣❖♣t ❢ ❵ ✭ ❳ ✮ ❀ ❛ ✭ ❳ ✮ ❀ ✛ ✭ ❳ ✮ ❣ Multi-objective EC Differences Goal: sample the Pareto front Archive Selection after ❋ ✵ ✭ ❳ ✮ , measuring: The Pareto rank of ❳ in the current population The percentage of the archive dominated by ❳ ...

  15. 4d Miner: Multi-Objective Evolutionary Algorithm Components ◆ ✸ ✂ ■ ❘ ✹ ✎ Search space ✡ ✒ ■ ❘ ✸ ❣ ❢ ❳ ❂ ✭ ■❀ ✐❀ r❀ ✇ ✮ ❀ ■ ✚ ❬✶ ❀ ❚ ❪ ❀ ✐ ✷ ❬✶ ❀ ◆ ❪ ❀ r ✷ ■ ❘ ❀ ✇ ✷ ■ ✎ Objectives ❛❀ ❵❀ ✛ ✎ Operators – Initialisation sampling mechanism average interval length minimal acceptable alignement minimal pattern size – Variation operators

  16. Sampling mechanism ❳ ❂ ✭ ✐❀ ✇❀ ■❀ r ✮ Daida 1999 ✎ ✐ : uniformly drawn in ❬✶ ❀ ◆ ❪ ; ✎ ✇ ❂ ✭✶ ❀ ✶ ❀ ✶✮ initial = Euclidean ✎ ■ ❂ – t ✶ : uniformly drawn in ❬✶ ❀ ❚ ❪ – ❵ ✭ ■ ✮ drawn ✘ ◆ ✭ ♠✐♥ ❵ ❀ ♠✐♥ ❵ ❂ ✶✵✮ ♠✐♥ ❵ user supplied – reject if t ✶ ✰ ❵ ✭ ■ ✮ ❃ ❚ ✎ r : such that the ball contains all neighbors with bounded ■ - ♠✐♥ ✛ user-supplied alignment: r ❂ ♠✐♥ ❦ ❢ ❞ ✇ ✭ ✐❀ ❦ ✮ s✿t✿ ✛ ■ ✐❀❦ ❃ ♠✐♥ ✛ ✮ ❣ ✎ reject if ❛ ✭ ❳ ✮ ❂ ❥❇ ✭ ✐❀ r ✮ ❥ ❁ ♠✐♥ ❛ ♠✐♥ ❛ user supplied Complexity: ❖ ✭ ◆ ❧♦❣ ◆ ✂ ♠✐♥ ❵ ✮

  17. First results: Failure! Diversity of stable spatio temporal patterns ✎ seems OK... + Variance Pareto front + + + + + Spatio−temporal width ...but all patterns represent the same spatio-temporal region... Failure analysis ✎ Experts are not interested in the Pareto front only. ✎ ... but in ALL active areas of the brain...

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend