funciones de agregaci
play

Funciones de agregaci c Torra 1 Vicen Octubre, 2014 1 Institut - PowerPoint PPT Presentation

Ja en on para la toma de decisiones multicriterio Funciones de agregaci c Torra 1 Vicen Octubre, 2014 1 Institut dInvestigaci o en Intel lig` encia Artificial (IIIA-CSIC); Universidad de Sk ovde (HiS, Suecia) - a partir de


  1. MCDM • Representaci´ on de preferencias – Funciones de utilidad. ◦ Ford T: U precio = 0 . 2 , U calidad = 0 . 8 , U confort = 0 . 3 ◦ Peugeot308: U precio = 0 . 7 , U calidad = 0 . 7 , U confort = 0 . 8 – Relaciones de preferencia (comparaci´ on entre varias alterntivas) ◦ R precio : R precio ( P 308 , FordT ) , ¬ R precio ( FordT, P 308) ◦ R calidad : ¬ R calidad ( P 308 , FordT ) , R calidad ( FordT, P 308) ◦ R confort : R confort ( P 308 , FordT ) , ¬ R confort ( FordT, P 308) Vicen¸ c Torra; Modeling decisions Ja´ en 17 / 97

  2. MCDM • Representaci´ on de preferencias – Ejemplo. Relaciones de preferencia. N´ umero Seguridad Precio Confort Maletero asientos Ford T + ++ + ++ + Seat 600 +++ + +++++ + +++ Simca 1000 +++++ +++ ++++ ++++ ++++ VW escarabajo ++++ +++++ ++ +++++ +++++ Citro¨ en Acadiane ++ ++++ +++ +++ ++ Vicen¸ c Torra; Modeling decisions Ja´ en 18 / 97

  3. MCDM • Representaci´ on de preferencias – Ejemplo. Funciones de utilidad. N´ umero Seguridad Precio Confort Maletero asientos Ford T 0 20 0 20 0 Seat 600 60 0 100 0 50 Simca 1000 100 30 100 50 70 VW escarabajo 80 50 30 70 100 Citro¨ en Acadiane 20 40 60 40 0 Vicen¸ c Torra; Modeling decisions Ja´ en 19 / 97

  4. MCDM • Representaci´ on de preferencias: Relaciones de preferencia – Formalizaci´ on: Conjunto de referencia X Propiedades (para todo x, y, z ) ∗ Relaci´ on binaria: I.e., subconjunto de R ⊆ X × X ∗ Denotamos x ≥ y sii ( x, y ) ∈ R ∗ Relaci´ on total o completa: x ≥ y o y ≥ x ∗ Relaci´ on transitiva: x ≥ y , y ≥ z entonces x ≥ z ∗ Relaci´ on reflexiva: x ≥ x Vicen¸ c Torra; Modeling decisions Ja´ en 20 / 97

  5. MCDM • Representaci´ on de preferencias: Relaciones de preferencia – Formalizaci´ on: Conjunto de referencia X Propiedades (para todo x, y, z ) ∗ Relaci´ on binaria: I.e., subconjunto de R ⊆ X × X ∗ Denotamos x ≥ y sii ( x, y ) ∈ R ∗ Relaci´ on total o completa: x ≥ y o y ≥ x ∗ Relaci´ on transitiva: x ≥ y , y ≥ z entonces x ≥ z ∗ Relaci´ on reflexiva: x ≥ x – Definici´ on: (en toma de decisiones) Una relaci´ on es una relaci´ on de preferencia racional si total, transitiva i reflexiva. – en matem´ aticas: preorden total Vicen¸ c Torra; Modeling decisions Ja´ en 20 / 97

  6. MCDM • Representaci´ on de preferencias – Ejemplo. Relaciones de preferencia racional Satisfacen completitud, transitividad, reflexividad N´ umero Seguridad Precio Confort Maletero asientos Ford T + ++ + ++ + Seat 600 +++ + +++++ + +++ Simca 1000 +++++ +++ ++++ ++++ ++++ VW escarabajo ++++ +++++ ++ +++++ +++++ Citro¨ en Acadiane ++ ++++ +++ +++ ++ Vicen¸ c Torra; Modeling decisions Ja´ en 21 / 97

  7. MCDM • Representaci´ on de preferencias: Funciones de utilidad – Formalizaci´ on: Conjunto de referencia X ◦ U : X → D para un cierto dominio D on: Una utilidad u representa una preferencia ≥ para – Representaci´ todo x, y ∈ X cuando x ≥ y si y solo si u ( x ) ≥ u ( y ) . Vicen¸ c Torra; Modeling decisions Ja´ en 22 / 97

  8. MCDM • Representaci´ on de preferencias: Funciones de utilidad – Formalizaci´ on: Conjunto de referencia X ◦ U : X → D para un cierto dominio D on: Una utilidad u representa una preferencia ≥ para – Representaci´ todo x, y ∈ X cuando x ≥ y si y solo si u ( x ) ≥ u ( y ) . Ejemplo. En el precio, la utilidad no representa la relaci´ on Es cierto u precio ( Simca 1000) ≥ u precio ( Seat 600) pero es falso Simca 1000 ≥ Seat 600 Vicen¸ c Torra; Modeling decisions Ja´ en 22 / 97

  9. MCDM • Representaci´ on de preferencias: Funciones de utilidad – Formalizaci´ on: Conjunto de referencia X ◦ U : X → D para un cierto dominio D on: Una utilidad u representa una preferencia ≥ para – Representaci´ todo x, y ∈ X cuando x ≥ y si y solo si u ( x ) ≥ u ( y ) . Ejemplo. En el precio, la utilidad no representa la relaci´ on Es cierto u precio ( Simca 1000) ≥ u precio ( Seat 600) pero es falso Simca 1000 ≥ Seat 600 – Relaci´ on: Podemos establecer una relaci´ on entre las utilidades y las relaciones de preferencia Vicen¸ c Torra; Modeling decisions Ja´ en 22 / 97

  10. MCDM • Representaci´ on de preferencias: Funciones de utilidad – Formalizaci´ on: Conjunto de referencia X ◦ U : X → D para un cierto dominio D – Representaci´ on: Una utilidad u representa una preferencia ≥ para todo x, y ∈ X cuando x ≥ y si y solo si u ( x ) ≥ u ( y ) . Ejemplo. En el precio, la utilidad no representa la relaci´ on Es cierto u precio ( Simca 1000) ≥ u precio ( Seat 600) pero es falso Simca 1000 ≥ Seat 600 – Relaci´ on: Podemos establecer una relaci´ on entre las utilidades y las relaciones de preferencia ◦ Teorema. Dado un conjunto de alternativas, existe una funci´ on de utilidad que representa a la relaci´ on de preferencia si y s´ olo si la relaci´ on de preferencia es racional. Vicen¸ c Torra; Modeling decisions Ja´ en 22 / 97

  11. MCDM • Representaci´ on de preferencias: Funciones de utilidad – Ejemplo: definici´ on para precio ◦ Presupuesto maximo de 10000 euros. ◦ Menor que 1000 es perfecto. ◦ Funcion lineal entre 1000 y 10000  x ≤ 1000 100 if   (10000 − x ) / 90 x ∈ (1000 , 10000) u p ( x ) = if x ≥ 10000 0  if  Vicen¸ c Torra; Modeling decisions Ja´ en 23 / 97

  12. MCDM • Representaci´ on de preferencias: Funciones de utilidad – Ejemplo: definici´ on para capacidad del maletero No siempre hay una relaci´ on mon´ otona entre los valores de un criterio y la utilidad optimo es de 1 m 3 . ◦ El maletero ´ ◦ Ni demasiado peque˜ no, ni demasiado grande  x ≤ 0 . 8 0 if   u m ( x ) = 100 − 500 | x − 1 | x ∈ (0 . 8 , 1 . 2) if 0 x ≥ 1 . 2  if  Vicen¸ c Torra; Modeling decisions Ja´ en 24 / 97

  13. MCDM • Decisi´ on – Modelizaci´ on del problema: representaci´ on de los criterios – Agregaci´ on – Selecci´ on de las alternativas Vicen¸ c Torra; Modeling decisions Ja´ en 25 / 97

  14. MCDM • Agregaci´ on, seg´ un la representaci´ on de las preferencias – Funciones de utilidad ◦ Ford T: U precio = 0 . 2 , U calidad = 0 . 8 , U confort = 0 . 3 ∗ Dadas unas utilidades, tenemos que agregarlas – Relaciones de preferencia (comparaci´ on entre varias alterntivas) ◦ R precio : R precio ( P 308 , FordT ) , ¬ R precio ( FordT, P 308) ◦ R calidad : ¬ R calidad ( P 308 , FordT ) , R calidad ( FordT, P 308) ∗ Dadas unas relaciones de preferencia, tenemos que agregarlas Vicen¸ c Torra; Modeling decisions Ja´ en 26 / 97

  15. MCDM • Decisi´ on con relaciones de preferencia Modelizaci´ on, agregaci´ on, selecci´ on N´ umero Seguridad Precio Confort Maletero Preferencia asientos agregada Ford T + ++ + ++ + + Seat 600 +++ + +++++ + +++ ++ Simca 1000 +++++ +++ ++++ ++++ ++++ ++++ VW esc. ++++ +++++ ++ +++++ +++++ +++++ Citr. Acadiane ++ ++++ +++ +++ ++ +++ Vicen¸ c Torra; Modeling decisions Ja´ en 27 / 97

  16. MCDM • Decisi´ on con funciones de utilidad Modelizaci´ on, agregaci´ on = AM, selecci´ on N´ umero Seguridad Precio Confort Maletero Preferencia asientos agregada Ford T 0 20 0 20 0 8 Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 VW 80 50 30 70 100 66 Citr. Acadiane 20 40 60 40 0 32 Vicen¸ c Torra; Modeling decisions Ja´ en 28 / 97

  17. Aggregation functions: an introduction Vicen¸ c Torra; Modeling decisions Ja´ en 29 / 97

  18. Aggregation functions • Aggregation and information fusion – In our case, how to combine information about criteria • In general, – it is a broad area, with different types of applications Vicen¸ c Torra; Modeling decisions Ja´ en 30 / 97

  19. Aggregation functions • Aggregation and information fusion – In our case, how to combine information about criteria • In general, – it is a broad area, with different types of applications • Examples of aggregation functions: – � N i =1 a i /N (AM arithmetic mean) – � N i =1 p i · a i (WM weighted mean) Vicen¸ c Torra; Modeling decisions Ja´ en 30 / 97

  20. Aggregation functions • Aggregation and information fusion – In our case, how to combine information about criteria • In general, – it is a broad area, with different types of applications • Examples of aggregation functions: – � N i =1 a i /N (AM arithmetic mean) – � N i =1 p i · a i (WM weighted mean) • Different functions, lead to different results – In our case, different orderings, different selections! Vicen¸ c Torra; Modeling decisions Ja´ en 30 / 97

  21. Aggregation functions • Goal of aggregation functions (in general, not restricted to MCDM) : – To produce a specific datum, and exhaustive, on an entity – Datum produced from information supplied by different information sources (or the same source over time) – Techniques to reduce noise, increase precision, summarize information, extract information, make decisions, etc. Vicen¸ c Torra; Modeling decisions Ja´ en 31 / 97

  22. Aggregation functions • Information fusion studies . . . . . . all aspects related to combining information: • Goals of data aggregation ( goals of the area ): Vicen¸ c Torra; Modeling decisions Ja´ en 32 / 97

  23. Aggregation functions • Information fusion studies . . . . . . all aspects related to combining information: • Goals of data aggregation ( goals of the area ): – Formalization of the aggregation process ◦ Definition of new functions ◦ Selection of functions (methods to decide which is the most appropriate function in a given context) ◦ Parameter determination Vicen¸ c Torra; Modeling decisions Ja´ en 32 / 97

  24. Aggregation functions • Information fusion studies . . . . . . all aspects related to combining information: • Goals of data aggregation ( goals of the area ): – Formalization of the aggregation process ◦ Definition of new functions ◦ Selection of functions (methods to decide which is the most appropriate function in a given context) ◦ Parameter determination – Study of existing methods: ◦ Caracterization of functions ◦ Determination of the modeling capabilities of the functions ◦ Relation between operators and parameters (how parameters influence the result: can be achieve dictatorship?, sensitivity to data → index) . Vicen¸ c Torra; Modeling decisions Ja´ en 32 / 97

  25. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P Vicen¸ c Torra; Modeling decisions Ja´ en 33 / 97

  26. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties Vicen¸ c Torra; Modeling decisions Ja´ en 33 / 97

  27. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a Vicen¸ c Torra; Modeling decisions Ja´ en 33 / 97

  28. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a – Monotonicity: C ( a 1 , . . . , a N ) ≥ C ( a ′ 1 , . . . , a ′ N ) , if a i ≥ a ′ i Vicen¸ c Torra; Modeling decisions Ja´ en 33 / 97

  29. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a – Monotonicity: C ( a 1 , . . . , a N ) ≥ C ( a ′ 1 , . . . , a ′ N ) , if a i ≥ a ′ i – Symmetry: For all permutation π over { 1 , . . . , N } C ( a 1 , . . . , a N ) = C ( a π (1) , . . . , a π ( N ) ) Vicen¸ c Torra; Modeling decisions Ja´ en 33 / 97

  30. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a – Monotonicity: C ( a 1 , . . . , a N ) ≥ C ( a ′ 1 , . . . , a ′ N ) , if a i ≥ a ′ i – Symmetry: For all permutation π over { 1 , . . . , N } C ( a 1 , . . . , a N ) = C ( a π (1) , . . . , a π ( N ) ) – Unanimity + monotonicity → internality: min i a i ≤ C ( a 1 , . . . , a N ) ≤ max i a i Vicen¸ c Torra; Modeling decisions Ja´ en 33 / 97

  31. Aggregation functions Definition of aggregation functions: • Definition from properties properties − → function • Heuristic definition properties ← − function • Definition from examples examples − → function Vicen¸ c Torra; Modeling decisions Ja´ en 34 / 97

  32. Aggregation functions • Definition from properties properties − → function Vicen¸ c Torra; Modeling decisions Ja´ en 35 / 97

  33. Aggregation functions • Definition from properties properties − → function • Some ways a) Using functional equations Vicen¸ c Torra; Modeling decisions Ja´ en 35 / 97

  34. Aggregation functions • Definition from properties properties − → function • Some ways a) Using functional equations b) Aggregation of a 1 , a 2 , . . . , a N ∈ D , as the datum c which is at a minimum distance from a i : � c { d ( c, a i ) } , C ( a 1 , a 2 , . . . , a N ) = arg min a i d is a distance over D . Vicen¸ c Torra; Modeling decisions Ja´ en 35 / 97

  35. Aggregation functions • Example (case (a)): Functional equations – Cauchy equation φ ( x + y ) = φ ( x ) + φ ( y ) – find φ ! Vicen¸ c Torra; Modeling decisions Ja´ en 36 / 97

  36. Aggregation functions • Example (case (a)): Functional equations – Cauchy equation φ ( x + y ) = φ ( x ) + φ ( y ) – find φ ! – φ ( x ) = αx for an arbitrary value for α Vicen¸ c Torra; Modeling decisions Ja´ en 36 / 97

  37. Aggregation functions • Example (case (a)): Functional equations – distribute s euros among m projects according to the opinion of N experts · · · · · · Proj 1 Proj 2 Proj j Proj m x 1 x 1 x 1 x 1 · · · · · · E 1 1 2 m j x 2 x 2 x 2 x 2 E 2 · · · · · · 1 2 j m . . . . . . . . . . . . x i x i x i x i E i · · · · · · 1 2 j m . . . . . . . . . . . . x N x N x N x N · · · · · · E N 1 2 j m DM f 1 ( x 1 ) f 2 ( x 2 ) · · · f j ( x j ) · · · f m ( x m ) Vicen¸ c Torra; Modeling decisions Ja´ en 37 / 97

  38. Aggregation functions • The general solution of the system (Proposition 3.11) for a given m > 2 f j : [0 , s ] N → R + for j = { 1 , · · · , m } (1) m m � � x j = s implies that f j ( x j ) = s (2) j =1 j =1 f j ( 0 ) = 0 for j = 1 , · · · , m (3) is given by Vicen¸ c Torra; Modeling decisions Ja´ en 38 / 97

  39. Aggregation functions • The general solution of the system (Proposition 3.11) for a given m > 2 f j : [0 , s ] N → R + for j = { 1 , · · · , m } (1) m m � � x j = s implies that f j ( x j ) = s (2) j =1 j =1 f j ( 0 ) = 0 for j = 1 , · · · , m (3) is given by N � f 1 ( x ) = f 2 ( x ) = · · · = f m ( x ) = f (( x 1 , x 2 , . . . , x N )) = α i x i , (4) i =1 where α 1 , · · · , α N are nonnegative constants satisfying � N i =1 α i = 1 , but are otherwise arbitrary. Vicen¸ c Torra; Modeling decisions Ja´ en 38 / 97

  40. Aggregation functions • Example (case (b)): Consider the following expression � c { d ( c, a i ) } , C ( a 1 , a 2 , . . . , a N ) = arg min a i where a i are numbers from R and d is a distance on D . Then, Vicen¸ c Torra; Modeling decisions Ja´ en 39 / 97

  41. Aggregation functions • Example (case (b)): Consider the following expression � C ( a 1 , a 2 , . . . , a N ) = arg min c { d ( c, a i ) } , a i where a i are numbers from R and d is a distance on D . Then, 1. When d ( a, b ) = ( a − b ) 2 , C is the arithmetic mean I.e., C ( a 1 , a 2 , . . . , a N ) = � N i =1 a i /N . 2. When d ( a, b ) = | a − b | , C is the median I.e., the median of a 1 , a 2 , . . . , a N is the element which occupies the central position when we order a i . 3. When d ( a, b ) = 1 iff a = b , C is the plurality rule (mode or voting). I.e., C ( a 1 , a 2 , . . . , a N ) selects the element of R with a largest frequency among elements in ( a 1 , a 2 , . . . , a N ) . Vicen¸ c Torra; Modeling decisions Ja´ en 39 / 97

  42. Aggregation for (numerical) utility functions Vicen¸ c Torra; Modeling decisions Ja´ en 40 / 97

  43. Aggregation for (numerical) utility functions • Decisi´ on con funciones de utilidad Modelizaci´ on, agregaci´ on = C , selecci´ on Seats Security Price Comfort trunk C = AM Ford T 0 20 0 20 0 8 Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 VW 80 50 30 70 100 66 Citr. Acadiane 20 40 60 40 0 32 Vicen¸ c Torra; Modeling decisions Ja´ en 41 / 97

  44. Aggregation for (numerical) utility functions • MCDM: Aggregation to deal with contradictory criteria Vicen¸ c Torra; Modeling decisions Ja´ en 42 / 97

  45. Aggregation for (numerical) utility functions • MCDM: Aggregation to deal with contradictory criteria • But there are occasions in which ordering is clear when a i ≤ b i it is clear that a ≤ b E.g., Seats Security Price Comfort trunk C = AM Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 Vicen¸ c Torra; Modeling decisions Ja´ en 42 / 97

  46. Aggregation for (numerical) utility functions • MCDM: Aggregation to deal with contradictory criteria • But there are occasions in which ordering is clear when a i ≤ b i it is clear that a ≤ b E.g., Seats Security Price Comfort trunk C = AM Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 • Pareto dominance: Given two vectors a = ( a 1 , . . . , a n ) and b = ( b 1 , . . . , b n ) , we say that b dominates a when a i ≤ b i for all i and there is at least one k such that a k < b k . Vicen¸ c Torra; Modeling decisions Ja´ en 42 / 97

  47. Aggregation for (numerical) utility functions • Pareto set, Pareto frontier, or non dominance set: Seats Security Price Comfort trunk C = AM Simca 1000 100 30 100 50 70 70 VW 80 50 30 70 100 66 Citr. Acadiane 20 40 60 40 0 32 • Each one wins at least in one criteria Vicen¸ c Torra; Modeling decisions Ja´ en 43 / 97

  48. Aggregation for (numerical) utility functions • Pareto set, Pareto frontier, or non dominance set: Given a set of alternatives U represented by vectors u = ( u 1 , . . . , u n ) , the Pareto frontier is the set u ∈ U such that there is no other v ∈ U such that v dominates u . PF = { u | there is no v s.t. v dominates u } • Pareto optimal: an element u of the Pareto set f 2 f 2 ( x 2 ) x 2 f 2 ( x 1 ) x 1 f 1 f 1 ( x 2 ) f 1 ( x 1 ) Vicen¸ c Torra; Modeling decisions Ja´ en 44 / 97

  49. Aggregation for (numerical) utility functions • MCDM: we aggregate utility, and order according to utility • The function of aggregation functions ◦ Different aggregations lead to different orders ◦ Aggregation establishes which points are equivalent ◦ Different aggregations, establish different curves of points (level curves) Criteria f 2 Satisfaction on: alt Price Quality Comfort alt Consensus alt Ranking FordT 0.2 0.8 0.3 FordT 0.35 206 0.72 f 2 ( x 2 ) x 2 FordT 0.35 206 0.7 0.7 0.8 206 0.72 ... ... ... ... ... ... f 2 ( x 1 ) x 1 f 1 f 1 ( x 2 ) f 1 ( x 1 ) Vicen¸ c Torra; Modeling decisions Ja´ en 45 / 97

  50. Aggregation for (numerical) utility functions • Why alternatives de to the arithmetic mean? – Not all criteria are equally important (security and comfort) – There are mandatory requirements (price below a threshold) – Compensation among criteria – Interactions among criteria Vicen¸ c Torra; Modeling decisions Ja´ en 46 / 97

  51. Aggregation: from the weighted mean to fuzzy integrals Vicen¸ c Torra; Modeling decisions Ja´ en 47 / 97

  52. Aggregation: from the weighted mean to fuzzy integrals An example Vicen¸ c Torra; Modeling decisions Ja´ en 48 / 97

  53. Aggregation: example Example. A and B teaching a tutorial+training course w/ constraints • The total number of sessions is six. • Professor A will give the tutorial, which should consist of about three sessions; three is the optimal number of sessions; a difference in the number of sessions greater than two is unacceptable. • Professor B will give the training part, consisting of about two sessions. • Both professors should give more or less the same number of sessions. A difference of one or two is half acceptable; a difference of three is unacceptable. Vicen¸ c Torra; Modeling decisions Ja´ en 49 / 97

  54. Aggregation: example Example. Formalization • Variables – x A : Number of sessions taught by Professor A – x B : Number of sessions taught by Professor B • Constraints – the constraints are translated into ∗ C 1 : x A + x B should be about 6 ∗ C 2 : x A should be about 3 ∗ C 3 : x B should be about 2 ∗ C 4 : | x A − x B | should be about 0 – using fuzzy sets, the constraints are described ... Vicen¸ c Torra; Modeling decisions Ja´ en 50 / 97

  55. Aggregation: example Example. Formalization • Constraints – if fuzzy set µ 6 expresses “about 6,” then, we evaluate “ x A + x B should be about 6” by µ 6 ( x A + x B ) . → given µ 6 , µ 3 , µ 2 , µ 0 , – Then, given a solution pair ( x A , x B ) , the degrees of satisfaction: ∗ µ 6 ( x A + x B ) ∗ µ 3 ( x A ) ∗ µ 2 ( x B ) ∗ µ 0 ( | x A − x B | ) Vicen¸ c Torra; Modeling decisions Ja´ en 51 / 97

  56. Aggregation: example Example. Formalization • Membership functions for constraints µ 2 µ 0 µ 3 µ 6 1 2 3 4 5 6 7 Vicen¸ c Torra; Modeling decisions Ja´ en 52 / 97

  57. Aggregation: example Example. Application alternative Satisfaction degrees Satisfaction degrees ( x A , x B ) ( µ 6 ( x A + x B ) , µ 3 ( x A ) , C 1 C 2 C 3 C 4 µ 2 ( x B ) , µ 0 ( | x A − x B | ) ) (2 , 2) ( µ 6 (4) , µ 3 (2) , µ 2 (2) , µ 0 (0) ) 0 0 . 5 1 1 (2 , 3) ( µ 6 (5) , µ 3 (2) , µ 2 (3) , µ 0 (1) ) 0 . 5 0 . 5 0 . 5 0 . 5 (2 , 4) ( µ 6 (6) , µ 3 (2) , µ 2 (4) , µ 0 (2) ) 1 0 . 5 0 0 . 5 (3 . 5 , 2 . 5) ( µ 6 (6) , µ 3 (3 . 5) , µ 2 (2 . 5) , µ 0 (1) ) 1 0 . 5 0 . 5 0 . 5 (3 , 2) ( µ 6 (5) , µ 3 (3) , µ 2 (2) , µ 0 (1) ) 0 . 5 1 1 0 . 5 (3 , 3) ( µ 6 (6) , µ 3 (3) , µ 2 (3) , µ 0 (0) ) 1 1 0 . 5 1 Vicen¸ c Torra; Modeling decisions Ja´ en 53 / 97

  58. Aggregation: from the weighted mean to fuzzy integrals WM, OWA, and WOWA operators Vicen¸ c Torra; Modeling decisions Ja´ en 54 / 97

  59. Aggregation: WM, OWA, and WOWA operators • Operators – Weighting vector (dimension N ): v = ( v 1 ...v N ) iff v i ∈ [0 , 1] and � i v i = 1 – Arithmetic mean (AM : R N → R ): AM ( a 1 , ..., a N ) = (1 /N ) � N i =1 a i – Weighted mean (WM: R N → R ): WM p ( a 1 , ..., a N ) = � N i =1 p i a i ( p a weighting vector of dimension N ) – Ordered Weighting Averaging operator (OWA: R N → R ): N � OWA w ( a 1 , ..., a N ) = w i a σ ( i ) , i =1 where { σ (1) , ..., σ ( N ) } is a permutation of { 1 , ..., N } s. t. a σ ( i − 1) ≥ a σ ( i ) , and w a weighting vector. Vicen¸ c Torra; Modeling decisions Ja´ en 55 / 97

  60. Aggregation: WM, OWA, and WOWA operators Example. Application • Let us consider the following situation: – Professor A is more important than Professor B – The number of sessions equal to six is the most important constraint (not a crisp requirement) – The difference in the number of sessions taught by the two professors is the least important constraint WM with p = ( p 1 , p 2 , p 3 , p 4 ) = (0 . 5 , 0 . 3 , 0 . 15 , 0 . 05) . Vicen¸ c Torra; Modeling decisions Ja´ en 56 / 97

  61. Aggregation: WM, OWA, and WOWA operators Example. Application • WM with p = ( p 1 , p 2 , p 3 , p 4 ) = (0 . 5 , 0 . 3 , 0 . 15 , 0 . 05) . alternative Aggregation of the Satisfaction degrees WM ( x A , x B ) WM p ( C 1 , C 2 , C 3 , C 4 ) (2 , 2) WM p (0 , 0 . 5 , 1 , 1) 0.35 (2 , 3) WM p (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5) 0.5 (2 , 4) WM p (1 , 0 . 5 , 0 , 0 . 5) 0.675 (3 . 5 , 2 . 5) WM p (1 , 0 . 5 , 0 . 5 , 0 . 5) 0.75 (3 , 2) WM p (0 . 5 , 1 , 1 , 0 . 5) 0.725 (3 , 3) WM p (1 , 1 , 0 . 5 , 1) 0.925 Vicen¸ c Torra; Modeling decisions Ja´ en 57 / 97

  62. Aggregation: WM, OWA, and WOWA operators Example. Application • Compensation: how many values can have a bad evaluation • One bad value does not matter: OWA with w = (1 / 3 , 1 / 3 , 1 / 3 , 0) (lowest value discarded) alternative Aggregation of the Satisfaction degrees OWA ( x A , x B ) OWA w ( C 1 , C 2 , C 3 , C 4 ) (2 , 2) OWA w (0 , 0 . 5 , 1 , 1) 0.8333 (2 , 3) OWA w (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5) 0.5 (2 , 4) OWA w (1 , 0 . 5 , 0 , 0 . 5) 0.6666 (3 . 5 , 2 . 5) OWA w (1 , 0 . 5 , 0 . 5 , 0 . 5) 0.6666 (3 , 2) OWA w (0 . 5 , 1 , 1 , 0 . 5) 0.8333 (3 , 3) OWA w (1 , 1 , 0 . 5 , 1) 1.0 Vicen¸ c Torra; Modeling decisions Ja´ en 58 / 97

  63. Aggregation: WM, OWA, and WOWA operators • Weighted Ordered Weighted Averaging WOWA operator (WOWA : R N → R ): WOWA p , w ( a 1 , ..., a N ) = � N i =1 ω i a σ ( i ) where ω i = w ∗ ( � j ≤ i p σ ( j ) ) − w ∗ ( � j<i p σ ( j ) ) , with σ a permutation of { 1 , ..., N } s. t. a σ ( i − 1) ≥ a σ ( i ) , and w ∗ a nondecreasing function that interpolates the points { ( i/N, � j ≤ i w j ) } i =1 ,...,N ∪ { (0 , 0) } . w ∗ is required to be a straight line when the points can be interpolated in this way. Vicen¸ c Torra; Modeling decisions Ja´ en 59 / 97

  64. Aggregation: WM, OWA, and WOWA operators • Construction of the w ∗ quantifier (a) (b) ( ) w w N N w w 2 2 ! 1 w 1 w 1 ! 1 � 0 � p � (1) p � (1) 1 = N 1 = N ::: 1 = N 0 0 0 0 p p p p p � (1) � (1) � (2) � ( N ) � (1) • Rationale for new weights ( ω i , for each value a i ) in terms of p and w . – If a i is small, and small values have more importance than larger ones, increase p i for a i (i.e., ω i ≥ p σ ( i ) ). (the same holds if the value a i is large and importance is given to large values) – If a i is small, and importance is for large values, ω i < p σ ( i ) (the same holds if a i is large and importance is given to small values). Vicen¸ c Torra; Modeling decisions Ja´ en 60 / 97

  65. Aggregation: WM, OWA, and WOWA operators • The shape of the function w ∗ gives importance – (a) to large values – (b) to medium values – (c) to small values – (d) equal importance to all values (a) (b) (c) (d) Vicen¸ c Torra; Modeling decisions Ja´ en 61 / 97

  66. Aggregation: WM, OWA, and WOWA operators Example. Application • Importance for constraints as given above: p = (0 . 5 , 0 . 3 , 0 . 15 , 0 . 05) • Compensation as given above: w = (1 / 3 , 1 / 3 , 1 / 3 , 0) (lowest value discarded) → WOWA with p and w . alternative Aggregation of the Satisfaction degrees WOWA ( x A , x B ) WOWA p , w ( C 1 , C 2 , C 3 , C 4 ) (2 , 2) WOWA p , w (0 , 0 . 5 , 1 , 1) 0.4666 (2 , 3) WOWA p , w (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5) 0.5 (2 , 4) WOWA p , w (1 , 0 . 5 , 0 , 0 . 5) 0.8333 (3 . 5 , 2 . 5) WOWA p , w (1 , 0 . 5 , 0 . 5 , 0 . 5) 0.8333 (3 , 2) WOWA p , w (0 . 5 , 1 , 1 , 0 . 5) 0.8 (3 , 3) WOWA p , w (1 , 1 , 0 . 5 , 1) 1.0 Vicen¸ c Torra; Modeling decisions Ja´ en 62 / 97

  67. Aggregation: WM, OWA, and WOWA operators • Properties – The WOWA operator generalizes the WM and the OWA operator. ◦ When p = (1 /N . . . 1 /N ) , OWA WOWA p , w ( a 1 , ..., a N ) = OWA w ( a 1 , ..., a N ) for all w and a i . ◦ When w = (1 /N ... 1 /N ) , WM WOWA p , w ( a 1 , ..., a N ) = WM p ( a 1 , ..., a N ) for all p and a i . ◦ When w = p = (1 /N ... 1 /N ) , AM WOWA p , w ( a 1 , ..., a N ) = AM ( a 1 , ..., a N ) Vicen¸ c Torra; Modeling decisions Ja´ en 63 / 97

  68. Aggregation: from the weighted mean to fuzzy integrals Choquet integrals Vicen¸ c Torra; Modeling decisions Ja´ en 64 / 97

  69. Choquet integrals • In WM, we combine a i w.r.t. weights p i . → a i is the value supplied by information source x i . Formally Vicen¸ c Torra; Modeling decisions Ja´ en 65 / 97

  70. Choquet integrals • In WM, we combine a i w.r.t. weights p i . → a i is the value supplied by information source x i . Formally – X = { x 1 , . . . , x N } is the set of information sources – f : X → R + the values supplied by the sources → then a i = f ( x i ) Thus, N N � � WM p ( a 1 , ..., a N ) = p i a i = p i f ( x i ) = WM p ( f ( x 1 ) , ..., f ( x N )) i =1 i =1 Vicen¸ c Torra; Modeling decisions Ja´ en 65 / 97

  71. Choquet integrals • In the WM, a single weight is used for each element I.e., p i = p ( x i ) (where, x i is the information source that supplies a i ) → when we consider a set A ⊂ X , weight of A ??? Vicen¸ c Torra; Modeling decisions Ja´ en 66 / 97

  72. Choquet integrals • In the WM, a single weight is used for each element I.e., p i = p ( x i ) (where, x i is the information source that supplies a i ) → when we consider a set A ⊂ X , weight of A ??? . . . fuzzy measures µ ( A ) Formally, – Fuzzy measure ( µ : ℘ ( X ) → [0 , 1] ), a set function satisfying (i) µ ( ∅ ) = 0 , µ ( X ) = 1 (boundary conditions) (ii) A ⊆ B implies µ ( A ) ≤ µ ( B ) (monotonicity) Vicen¸ c Torra; Modeling decisions Ja´ en 66 / 97

  73. Choquet integrals • Now, we have a fuzzy measure µ ( A ) then, how aggregation proceeds? ⇒ fuzzy integrals as the Choquet integral Vicen¸ c Torra; Modeling decisions Ja´ en 67 / 97

  74. Choquet integrals • Choquet integral of f w.r.t. µ (alternative notation, CI µ ( a 1 , . . . , a N ) /CI µ ( f ) ) N � � ( C ) fdµ = [ f ( x s ( i ) ) − f ( x s ( i − 1) )] µ ( A s ( i ) ) , i =1 where s in f ( x s ( i ) ) is a permutation so that f ( x s ( i − 1) ) ≤ f ( x s ( i ) ) for i ≥ 1 , f ( x s (0) ) = 0 , and A s ( k ) = { x s ( j ) | j ≥ k } and A s ( N +1) = ∅ . • Alternative expressions (Proposition 6.18): N � � ( C ) fdµ = f ( x σ ( i ) )[ µ ( A σ ( i ) ) − µ ( A σ ( i − 1) )] , i =1 N � � ( C ) fdµ = f ( x s ( i ) )[ µ ( A s ( i ) ) − µ ( A s ( i +1) )] , i =1 where σ is a permutation of { 1 , . . . , N } s.t. f ( x σ ( i − 1) ) ≥ f ( x σ ( i ) ) , where A σ ( k ) = { x σ ( j ) | j ≤ k } for k ≥ 1 and A σ (0) = ∅ Vicen¸ c Torra; Modeling decisions Ja´ en 68 / 97

  75. Choquet integrals • Different equations point out different aspects of the CI fdµ = � N (6.1) ( C ) � i =1 [ f ( x s ( i ) ) − f ( x s ( i − 1) )] µ ( A s ( i ) ) , 0 a s (1) a s (2) a s (3) a s (4) a s (5) µ ( A s (2) ) µ ( A s (1) ) = { x s (1) , · · · , x s ( N ) } µ ( A s (4) ) = { x s (4) , · · · , x s ( N ) } fdµ = � N (6.2) ( C ) � i =1 f ( x σ ( i ) )[ µ ( A σ ( i ) ) − µ ( A σ ( i − 1) )] , Vicen¸ c Torra; Modeling decisions Ja´ en 69 / 97

  76. Choquet integrals � • fdµ = (for additive measures) (6.5) � x ∈ X f ( x ) µ ( { x } ) (6.6) � R i =1 b i µ ( { x | f ( x ) = b i } ) (6.7) � N i =1 ( a i − a i − 1 ) µ ( { x | f ( x ) ≥ a i } ) (6.8) � N � � i =1 ( a i − a i − 1 ) 1 − µ ( { x | f ( x ) ≤ a i − 1 } ) (a) (b) (c) b i b i a i b i − 1 b i − 1 a i − 1 x 1 x N x 1 x N x 1 { x | f ( x ) = b i } { x | f ( x ) ≥ a i } x • Among (6.5), (6.6) and (6.7), only (6.7) satisfies internality. Vicen¸ c Torra; Modeling decisions Ja´ en 70 / 97

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend