decisi o agregaci o i consens
play

Decisi o: agregaci o i consens Vicen c Torra Universitat de Sk - PowerPoint PPT Presentation

Decisi o: agregaci o i consens Vicen c Torra Universitat de Sk ovde (HiS, Su` ecia) Novembre, 2015 Bibliografia (i/o spam) Bibliografia Gilboa, I., Theory of decision under uncertainty, Cambridge University Press, 2009.


  1. MCDM • Representation of preferences – Utility functions. ◦ Ford T: U precio = 0 . 2 , U calidad = 0 . 8 , U confort = 0 . 3 ◦ Peugeot308: U precio = 0 . 7 , U calidad = 0 . 7 , U confort = 0 . 8 – Preference relations (comparison between pairs of alternatives) ◦ R precio : R precio ( P 308 , FordT ) , ¬ R precio ( FordT, P 308) ◦ R calidad : ¬ R calidad ( P 308 , FordT ) , R calidad ( FordT, P 308) ◦ R confort : R confort ( P 308 , FordT ) , ¬ R confort ( FordT, P 308) Vicen¸ c Torra; Modeling decisions UdG 2015 18 / 102

  2. MCDM • Preference representation – Example. Preference relations. trunk 1 Number of Security Price Confort seats Ford T + ++ + ++ + Seat 600 +++ + +++++ + +++ Simca 1000 +++++ +++ ++++ ++++ ++++ VW Beetle ++++ +++++ ++ +++++ +++++ Citro¨ en Acadiane ++ ++++ +++ +++ ++ Vicen¸ c Torra; Modeling decisions UdG 2015 19 / 102

  3. MCDM • Preference representation – Example. Utility functions. trunk 2 Number of Security Price Confort seats Ford T 0 20 0 20 0 Seat 600 60 0 100 0 50 Simca 1000 100 30 100 50 70 VW Beetle 80 50 30 70 100 Citro¨ en Acadiane 20 40 60 40 0 Vicen¸ c Torra; Modeling decisions UdG 2015 20 / 102

  4. MCDM • Preference representation: Preference relations – Formalization: Reference set X Properties (for all x, y, z ) ∗ Binary relation: I.e., a subset R ⊆ X × X ∗ We denote by x ≥ y if and only if ( x, y ) ∈ R ∗ Total or complet relation: x ≥ y o y ≥ x ∗ Transitive relation: x ≥ y , y ≥ z entonces x ≥ z ∗ Reflexive relation: x ≥ x Vicen¸ c Torra; Modeling decisions UdG 2015 21 / 102

  5. MCDM • Preference representation: Preference relations – Formalization: Reference set X Properties (for all x, y, z ) ∗ Binary relation: I.e., a subset R ⊆ X × X ∗ We denote by x ≥ y if and only if ( x, y ) ∈ R ∗ Total or complet relation: x ≥ y o y ≥ x ∗ Transitive relation: x ≥ y , y ≥ z entonces x ≥ z ∗ Reflexive relation: x ≥ x – Definition: (in decision making) A relation is a rational preference relation if it is total, transitive and reflexive. – in mathematics: a total preorder Vicen¸ c Torra; Modeling decisions UdG 2015 21 / 102

  6. MCDM • Preference representation – Example. Preference relation. trunk 3 Number of Security Price Confort seats Ford T + ++ + ++ + Seat 600 +++ + +++++ + +++ Simca 1000 +++++ +++ ++++ ++++ ++++ VW Beetle ++++ +++++ ++ +++++ +++++ Citro¨ en Acadiane ++ ++++ +++ +++ ++ Vicen¸ c Torra; Modeling decisions UdG 2015 22 / 102

  7. MCDM • Preference representation: Utility functions – Formalization: Reference set X ◦ U : X → D for a given domain D – Representation: A utility u represents a preference ≥ when for all x, y ∈ X when x ≥ y if and only if u ( x ) ≥ u ( y ) . Vicen¸ c Torra; Modeling decisions UdG 2015 23 / 102

  8. MCDM • Preference representation: Utility functions – Formalization: Reference set X ◦ U : X → D for a given domain D – Representation: A utility u represents a preference ≥ when for all x, y ∈ X when x ≥ y if and only if u ( x ) ≥ u ( y ) . Example. For the price, the utility does not represent the relation It is true u precio ( Simca 1000) ≥ u precio ( Seat 600) but it is false Simca 1000 ≥ Seat 600 Vicen¸ c Torra; Modeling decisions UdG 2015 23 / 102

  9. MCDM • Preference representation: Utility functions – Formalization: Reference set X ◦ U : X → D for a given domain D – Representation: A utility u represents a preference ≥ when for all x, y ∈ X when x ≥ y if and only if u ( x ) ≥ u ( y ) . Example. For the price, the utility does not represent the relation It is true u precio ( Simca 1000) ≥ u precio ( Seat 600) but it is false Simca 1000 ≥ Seat 600 – Relation: We can establish a relationship between utilities and preference relations Vicen¸ c Torra; Modeling decisions UdG 2015 23 / 102

  10. MCDM • Preference representation: Utility functions – Formalization: Reference set X ◦ U : X → D for a given domain D – Representation: A utility u represents a preference ≥ when for all x, y ∈ X when x ≥ y if and only if u ( x ) ≥ u ( y ) . Example. For the price, the utility does not represent the relation It is true u precio ( Simca 1000) ≥ u precio ( Seat 600) but it is false Simca 1000 ≥ Seat 600 – Relation: We can establish a relationship between utilities and preference relations ◦ Theorem. Given a set of alternatives, there exist a utility function that represents the preference relation if and only if the preference relation is rational. Vicen¸ c Torra; Modeling decisions UdG 2015 23 / 102

  11. MCDM • Preference representation: Utility functions – Example: definition for price ◦ Maximum budget 10000 euros. ◦ Less that 1000 is perfect ◦ Lineal function between 1000 and 10000  x ≤ 1000 100 if   (10000 − x ) / 90 x ∈ (1000 , 10000) u p ( x ) = if x ≥ 10000 0  if  Vicen¸ c Torra; Modeling decisions UdG 2015 24 / 102

  12. MCDM • Preference representation: Utility functions – Example: definition for trunk capacity Not always is a monotonic relationship of utility with respect to the values of a criterion ◦ The trunk is optimal for 1 m 3 . ◦ Neither too small, nor too large  x ≤ 0 . 8 0 if   u m ( x ) = 100 − 500 | x − 1 | x ∈ (0 . 8 , 1 . 2) if 0 x ≥ 1 . 2  if  Vicen¸ c Torra; Modeling decisions UdG 2015 25 / 102

  13. MCDM • Decision – Modeling the problem: representation of the criteria – Aggregation – Selection of alternatives Vicen¸ c Torra; Modeling decisions UdG 2015 26 / 102

  14. MCDM • Aggregation, it depends on the representation for preferences – Utility functions ◦ Ford T: U precio = 0 . 2 , U calidad = 0 . 8 , U confort = 0 . 3 ∗ Given utilities, we aggregate them – Preference relationships (comparison between pairs of alternatives) ◦ R precio : R precio ( P 308 , FordT ) , ¬ R precio ( FordT, P 308) ◦ R calidad : ¬ R calidad ( P 308 , FordT ) , R calidad ( FordT, P 308) ∗ Given preference relations, we aggregate them Vicen¸ c Torra; Modeling decisions UdG 2015 27 / 102

  15. MCDM • Decision for preference relations Modelling, aggregation, selection trunk4 Number of Security Price Confort Aggregated seats Preference Ford T + ++ + ++ + + Seat 600 +++ + +++++ + +++ ++ Simca 1000 +++++ +++ ++++ ++++ ++++ ++++ VW Beetle ++++ +++++ ++ +++++ +++++ +++++ Citr. Acadiane ++ ++++ +++ +++ ++ +++ Vicen¸ c Torra; Modeling decisions UdG 2015 28 / 102

  16. MCDM • Decision for utility functions Modelling, aggregation = AM, selection trunk5 Number of Security Price Confort Aggregated seats Utility Ford T 0 20 0 20 0 8 Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 VW 80 50 30 70 100 66 Citr. Acadiane 20 40 60 40 0 32 Vicen¸ c Torra; Modeling decisions UdG 2015 29 / 102

  17. Aggregation functions Vicen¸ c Torra; Modeling decisions UdG 2015 30 / 102

  18. Aggregation functions • Outline – Introduction – Aggregation for (numerical) utility functions: basics – A tour on (numerical) aggregation: from WM to Fuzzy integrals – Aggregation for preference relations Vicen¸ c Torra; Modeling decisions UdG 2015 31 / 102

  19. Aggregation functions: an introduction Vicen¸ c Torra; Modeling decisions UdG 2015 32 / 102

  20. Aggregation functions • Aggregation and information fusion – In our case, how to combine information about criteria • In general, – it is a broad area, with different types of applications Vicen¸ c Torra; Modeling decisions UdG 2015 33 / 102

  21. Aggregation functions • Aggregation and information fusion – In our case, how to combine information about criteria • In general, – it is a broad area, with different types of applications • Examples of aggregation functions: – � N i =1 a i /N (AM arithmetic mean) – � N i =1 p i · a i (WM weighted mean) Vicen¸ c Torra; Modeling decisions UdG 2015 33 / 102

  22. Aggregation functions • Aggregation and information fusion – In our case, how to combine information about criteria • In general, – it is a broad area, with different types of applications • Examples of aggregation functions: – � N i =1 a i /N (AM arithmetic mean) – � N i =1 p i · a i (WM weighted mean) • Different functions, lead to different results – In our case, different orderings, different selections! Vicen¸ c Torra; Modeling decisions UdG 2015 33 / 102

  23. Aggregation functions • Goal of aggregation functions (in general, not restricted to MCDM) : – To produce a specific datum, and exhaustive, on an entity – Datum produced from information supplied by different information sources (or the same source over time) – Techniques to reduce noise, increase precision, summarize information, extract information, make decisions, etc. Vicen¸ c Torra; Modeling decisions UdG 2015 34 / 102

  24. Aggregation functions • Information fusion studies . . . . . . all aspects related to combining information: • Goals of data aggregation ( goals of the area ): Vicen¸ c Torra; Modeling decisions UdG 2015 35 / 102

  25. Aggregation functions • Information fusion studies . . . . . . all aspects related to combining information: • Goals of data aggregation ( goals of the area ): – Formalization of the aggregation process ◦ Definition of new functions ◦ Selection of functions (methods to decide which is the most appropriate function in a given context) ◦ Parameter determination Vicen¸ c Torra; Modeling decisions UdG 2015 35 / 102

  26. Aggregation functions • Information fusion studies . . . . . . all aspects related to combining information: • Goals of data aggregation ( goals of the area ): – Formalization of the aggregation process ◦ Definition of new functions ◦ Selection of functions (methods to decide which is the most appropriate function in a given context) ◦ Parameter determination – Study of existing methods: ◦ Caracterization of functions ◦ Determination of the modeling capabilities of the functions ◦ Relation between operators and parameters (how parameters influence the result: can be achieve dictatorship?, sensitivity to data → index) . Vicen¸ c Torra; Modeling decisions UdG 2015 35 / 102

  27. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P Vicen¸ c Torra; Modeling decisions UdG 2015 36 / 102

  28. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties Vicen¸ c Torra; Modeling decisions UdG 2015 36 / 102

  29. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a Vicen¸ c Torra; Modeling decisions UdG 2015 36 / 102

  30. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a – Monotonicity: C ( a 1 , . . . , a N ) ≥ C ( a ′ 1 , . . . , a ′ N ) , if a i ≥ a ′ i Vicen¸ c Torra; Modeling decisions UdG 2015 36 / 102

  31. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a – Monotonicity: C ( a 1 , . . . , a N ) ≥ C ( a ′ 1 , . . . , a ′ N ) , if a i ≥ a ′ i – Symmetry: For all permutation π over { 1 , . . . , N } C ( a 1 , . . . , a N ) = C ( a π (1) , . . . , a π ( N ) ) Vicen¸ c Torra; Modeling decisions UdG 2015 36 / 102

  32. Aggregation functions • Terms: – Information integration – Information fusion: concrete functions / techniques concrete process to combine several data into a single datum. – Aggregation functions: C : D N → D ( C from C onsensus) → i C with parameters (background knowledge): C P • Aggregation functions: basic properties – Unanimity and idempotency: C ( a, . . . , a ) = a for all a – Monotonicity: C ( a 1 , . . . , a N ) ≥ C ( a ′ 1 , . . . , a ′ N ) , if a i ≥ a ′ i – Symmetry: For all permutation π over { 1 , . . . , N } C ( a 1 , . . . , a N ) = C ( a π (1) , . . . , a π ( N ) ) – Unanimity + monotonicity → internality: min i a i ≤ C ( a 1 , . . . , a N ) ≤ max i a i Vicen¸ c Torra; Modeling decisions UdG 2015 36 / 102

  33. Aggregation functions Definition of aggregation functions: • Definition from properties properties − → function • Heuristic definition properties ← − function • Definition from examples examples − → function Vicen¸ c Torra; Modeling decisions UdG 2015 37 / 102

  34. Aggregation functions • Definition from properties properties − → function Vicen¸ c Torra; Modeling decisions UdG 2015 38 / 102

  35. Aggregation functions • Definition from properties properties − → function • Some ways a) Using functional equations Vicen¸ c Torra; Modeling decisions UdG 2015 38 / 102

  36. Aggregation functions • Definition from properties properties − → function • Some ways a) Using functional equations b) Aggregation of a 1 , a 2 , . . . , a N ∈ D , as the datum c which is at a minimum distance from a i : � c { d ( c, a i ) } , C ( a 1 , a 2 , . . . , a N ) = arg min a i d is a distance over D . Vicen¸ c Torra; Modeling decisions UdG 2015 38 / 102

  37. Aggregation functions • Example (case (a)): Functional equations – Cauchy equation φ ( x + y ) = φ ( x ) + φ ( y ) – find φ ! Vicen¸ c Torra; Modeling decisions UdG 2015 39 / 102

  38. Aggregation functions • Example (case (a)): Functional equations – Cauchy equation φ ( x + y ) = φ ( x ) + φ ( y ) – find φ ! – φ ( x ) = αx for an arbitrary value for α Vicen¸ c Torra; Modeling decisions UdG 2015 39 / 102

  39. Aggregation functions • Example (case (a)): Functional equations – distribute s euros among m projects according to the opinion of N experts · · · · · · Proj 1 Proj 2 Proj j Proj m x 1 x 1 x 1 x 1 · · · · · · E 1 1 2 m j x 2 x 2 x 2 x 2 E 2 · · · · · · 1 2 j m . . . . . . . . . . . . x i x i x i x i E i · · · · · · 1 2 j m . . . . . . . . . . . . x N x N x N x N · · · · · · E N 1 2 j m DM f 1 ( x 1 ) f 2 ( x 2 ) · · · f j ( x j ) · · · f m ( x m ) Vicen¸ c Torra; Modeling decisions UdG 2015 40 / 102

  40. Aggregation functions • The general solution of the system (Proposition 3.11) for a given m > 2 f j : [0 , s ] N → R + for j = { 1 , · · · , m } (1) m m � � x j = s implies that f j ( x j ) = s (2) j =1 j =1 f j ( 0 ) = 0 for j = 1 , · · · , m (3) is given by Vicen¸ c Torra; Modeling decisions UdG 2015 41 / 102

  41. Aggregation functions • The general solution of the system (Proposition 3.11) for a given m > 2 f j : [0 , s ] N → R + for j = { 1 , · · · , m } (1) m m � � x j = s implies that f j ( x j ) = s (2) j =1 j =1 f j ( 0 ) = 0 for j = 1 , · · · , m (3) is given by N � f 1 ( x ) = f 2 ( x ) = · · · = f m ( x ) = f (( x 1 , x 2 , . . . , x N )) = α i x i , (4) i =1 where α 1 , · · · , α N are nonnegative constants satisfying � N i =1 α i = 1 , but are otherwise arbitrary. Vicen¸ c Torra; Modeling decisions UdG 2015 41 / 102

  42. Aggregation functions • Example (case (b)): Consider the following expression � c { d ( c, a i ) } , C ( a 1 , a 2 , . . . , a N ) = arg min a i where a i are numbers from R and d is a distance on D . Then, Vicen¸ c Torra; Modeling decisions UdG 2015 42 / 102

  43. Aggregation functions • Example (case (b)): Consider the following expression � C ( a 1 , a 2 , . . . , a N ) = arg min c { d ( c, a i ) } , a i where a i are numbers from R and d is a distance on D . Then, 1. When d ( a, b ) = ( a − b ) 2 , C is the arithmetic mean I.e., C ( a 1 , a 2 , . . . , a N ) = � N i =1 a i /N . 2. When d ( a, b ) = | a − b | , C is the median I.e., the median of a 1 , a 2 , . . . , a N is the element which occupies the central position when we order a i . 3. When d ( a, b ) = 1 iff a = b , C is the plurality rule (mode or voting). I.e., C ( a 1 , a 2 , . . . , a N ) selects the element of R with a largest frequency among elements in ( a 1 , a 2 , . . . , a N ) . Vicen¸ c Torra; Modeling decisions UdG 2015 42 / 102

  44. Aggregation for (numerical) utility functions Vicen¸ c Torra; Modeling decisions UdG 2015 43 / 102

  45. Aggregation for (numerical) utility functions • Decision for utility functions Modelling, aggregation = C , selection Seats Security Price Comfort trunk C = AM Ford T 0 20 0 20 0 8 Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 VW 80 50 30 70 100 66 Citr. Acadiane 20 40 60 40 0 32 Vicen¸ c Torra; Modeling decisions UdG 2015 44 / 102

  46. Aggregation for (numerical) utility functions • MCDM: Aggregation to deal with contradictory criteria Vicen¸ c Torra; Modeling decisions UdG 2015 45 / 102

  47. Aggregation for (numerical) utility functions • MCDM: Aggregation to deal with contradictory criteria • But there are occasions in which ordering is clear when a i ≤ b i it is clear that a ≤ b E.g., Seats Security Price Comfort trunk C = AM Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 Vicen¸ c Torra; Modeling decisions UdG 2015 45 / 102

  48. Aggregation for (numerical) utility functions • MCDM: Aggregation to deal with contradictory criteria • But there are occasions in which ordering is clear when a i ≤ b i it is clear that a ≤ b E.g., Seats Security Price Comfort trunk C = AM Seat 600 60 0 100 0 50 42 Simca 1000 100 30 100 50 70 70 • Pareto dominance: Given two vectors a = ( a 1 , . . . , a n ) and b = ( b 1 , . . . , b n ) , we say that b dominates a when a i ≤ b i for all i and there is at least one k such that a k < b k . Vicen¸ c Torra; Modeling decisions UdG 2015 45 / 102

  49. Aggregation for (numerical) utility functions • Pareto set, Pareto frontier, or non dominance set: Seats Security Price Comfort trunk C = AM Simca 1000 100 30 100 50 70 70 VW 80 50 30 70 100 66 Citr. Acadiane 20 40 60 40 0 32 • Each one wins at least in one criteria to another one Vicen¸ c Torra; Modeling decisions UdG 2015 46 / 102

  50. Aggregation for (numerical) utility functions • Pareto set, Pareto frontier, or non dominance set: Given a set of alternatives U represented by vectors u = ( u 1 , . . . , u n ) , the Pareto frontier is the set u ∈ U such that there is no other v ∈ U such that v dominates u . PF = { u | there is no v s.t. v dominates u } • Pareto optimal: an element u of the Pareto set f 2 f 2 ( x 2 ) x 2 f 2 ( x 1 ) x 1 f 1 f 1 ( x 2 ) f 1 ( x 1 ) Vicen¸ c Torra; Modeling decisions UdG 2015 47 / 102

  51. Aggregation for (numerical) utility functions • MCDM: we aggregate utility, and order according to utility • The function of aggregation functions ◦ Different aggregations lead to different orders ◦ Aggregation establishes which points are equivalent ◦ Different aggregations, establish different curves of points (level curves) Criteria f 2 Satisfaction on: alt Price Quality Comfort alt Consensus alt Ranking FordT 0.2 0.8 0.3 FordT 0.35 206 0.72 f 2 ( x 2 ) x 2 FordT 0.35 206 0.7 0.7 0.8 206 0.72 ... ... ... ... ... ... f 2 ( x 1 ) x 1 f 1 f 1 ( x 2 ) f 1 ( x 1 ) Vicen¸ c Torra; Modeling decisions UdG 2015 48 / 102

  52. Aggregation for (numerical) utility functions • Why alternatives to the arithmetic mean? – Not all criteria are equally important (security and comfort) – There are mandatory requirements (price below a threshold) – Compensation among criteria – Interactions among criteria Vicen¸ c Torra; Modeling decisions UdG 2015 49 / 102

  53. Aggregation: from the weighted mean to fuzzy integrals Vicen¸ c Torra; Modeling decisions UdG 2015 50 / 102

  54. Aggregation: from the weighted mean to fuzzy integrals An example Vicen¸ c Torra; Modeling decisions UdG 2015 51 / 102

  55. Aggregation: example Example. A and B teaching a tutorial+training course w/ constraints • The total number of sessions is six. • Professor A will give the tutorial, which should consist of about three sessions; three is the optimal number of sessions; a difference in the number of sessions greater than two is unacceptable. • Professor B will give the training part, consisting of about two sessions. • Both professors should give more or less the same number of sessions. A difference of one or two is half acceptable; a difference of three is unacceptable. Vicen¸ c Torra; Modeling decisions UdG 2015 52 / 102

  56. Aggregation: example Example. Formalization • Variables – x A : Number of sessions taught by Professor A – x B : Number of sessions taught by Professor B • Constraints – the constraints are translated into ∗ C 1 : x A + x B should be about 6 ∗ C 2 : x A should be about 3 ∗ C 3 : x B should be about 2 ∗ C 4 : | x A − x B | should be about 0 – using fuzzy sets, the constraints are described ... Vicen¸ c Torra; Modeling decisions UdG 2015 53 / 102

  57. Aggregation: example Example. Formalization • Constraints – if fuzzy set µ 6 expresses “about 6,” then, we evaluate “ x A + x B should be about 6” by µ 6 ( x A + x B ) . → given µ 6 , µ 3 , µ 2 , µ 0 , – Then, given a solution pair ( x A , x B ) , the degrees of satisfaction: ∗ µ 6 ( x A + x B ) ∗ µ 3 ( x A ) ∗ µ 2 ( x B ) ∗ µ 0 ( | x A − x B | ) Vicen¸ c Torra; Modeling decisions UdG 2015 54 / 102

  58. Aggregation: example Example. Formalization • Membership functions for constraints µ 2 µ 0 µ 3 µ 6 1 2 3 4 5 6 7 Vicen¸ c Torra; Modeling decisions UdG 2015 55 / 102

  59. Aggregation: example Example. Application alternative Satisfaction degrees Satisfaction degrees ( x A , x B ) ( µ 6 ( x A + x B ) , µ 3 ( x A ) , C 1 C 2 C 3 C 4 µ 2 ( x B ) , µ 0 ( | x A − x B | ) ) (2 , 2) ( µ 6 (4) , µ 3 (2) , µ 2 (2) , µ 0 (0) ) 0 0 . 5 1 1 (2 , 3) ( µ 6 (5) , µ 3 (2) , µ 2 (3) , µ 0 (1) ) 0 . 5 0 . 5 0 . 5 0 . 5 (2 , 4) ( µ 6 (6) , µ 3 (2) , µ 2 (4) , µ 0 (2) ) 1 0 . 5 0 0 . 5 (3 . 5 , 2 . 5) ( µ 6 (6) , µ 3 (3 . 5) , µ 2 (2 . 5) , µ 0 (1) ) 1 0 . 5 0 . 5 0 . 5 (3 , 2) ( µ 6 (5) , µ 3 (3) , µ 2 (2) , µ 0 (1) ) 0 . 5 1 1 0 . 5 (3 , 3) ( µ 6 (6) , µ 3 (3) , µ 2 (3) , µ 0 (0) ) 1 1 0 . 5 1 Vicen¸ c Torra; Modeling decisions UdG 2015 56 / 102

  60. Aggregation: from the weighted mean to fuzzy integrals WM, OWA, and WOWA operators Vicen¸ c Torra; Modeling decisions UdG 2015 57 / 102

  61. Aggregation: WM, OWA, and WOWA operators • Operators – Weighting vector (dimension N ): v = ( v 1 ...v N ) iff v i ∈ [0 , 1] and � i v i = 1 – Arithmetic mean (AM : R N → R ): AM ( a 1 , ..., a N ) = (1 /N ) � N i =1 a i – Weighted mean (WM: R N → R ): WM p ( a 1 , ..., a N ) = � N i =1 p i a i ( p a weighting vector of dimension N ) – Ordered Weighting Averaging operator (OWA: R N → R ): N � OWA w ( a 1 , ..., a N ) = w i a σ ( i ) , i =1 where { σ (1) , ..., σ ( N ) } is a permutation of { 1 , ..., N } s. t. a σ ( i − 1) ≥ a σ ( i ) , and w a weighting vector. Vicen¸ c Torra; Modeling decisions UdG 2015 58 / 102

  62. Aggregation: WM, OWA, and WOWA operators Example. Application • Let us consider the following situation: – Professor A is more important than Professor B – The number of sessions equal to six is the most important constraint (not a crisp requirement) – The difference in the number of sessions taught by the two professors is the least important constraint WM with p = ( p 1 , p 2 , p 3 , p 4 ) = (0 . 5 , 0 . 3 , 0 . 15 , 0 . 05) . Vicen¸ c Torra; Modeling decisions UdG 2015 59 / 102

  63. Aggregation: WM, OWA, and WOWA operators Example. Application • WM with p = ( p 1 , p 2 , p 3 , p 4 ) = (0 . 5 , 0 . 3 , 0 . 15 , 0 . 05) . alternative Aggregation of the Satisfaction degrees WM ( x A , x B ) WM p ( C 1 , C 2 , C 3 , C 4 ) (2 , 2) WM p (0 , 0 . 5 , 1 , 1) 0.35 (2 , 3) WM p (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5) 0.5 (2 , 4) WM p (1 , 0 . 5 , 0 , 0 . 5) 0.675 (3 . 5 , 2 . 5) WM p (1 , 0 . 5 , 0 . 5 , 0 . 5) 0.75 (3 , 2) WM p (0 . 5 , 1 , 1 , 0 . 5) 0.725 (3 , 3) WM p (1 , 1 , 0 . 5 , 1) 0.925 Vicen¸ c Torra; Modeling decisions UdG 2015 60 / 102

  64. Aggregation: WM, OWA, and WOWA operators Example. Application • Compensation: how many values can have a bad evaluation • One bad value does not matter: OWA with w = (1 / 3 , 1 / 3 , 1 / 3 , 0) (lowest value discarded) alternative Aggregation of the Satisfaction degrees OWA ( x A , x B ) OWA w ( C 1 , C 2 , C 3 , C 4 ) (2 , 2) OWA w (0 , 0 . 5 , 1 , 1) 0.8333 (2 , 3) OWA w (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5) 0.5 (2 , 4) OWA w (1 , 0 . 5 , 0 , 0 . 5) 0.6666 (3 . 5 , 2 . 5) OWA w (1 , 0 . 5 , 0 . 5 , 0 . 5) 0.6666 (3 , 2) OWA w (0 . 5 , 1 , 1 , 0 . 5) 0.8333 (3 , 3) OWA w (1 , 1 , 0 . 5 , 1) 1.0 Vicen¸ c Torra; Modeling decisions UdG 2015 61 / 102

  65. Aggregation: WM, OWA, and WOWA operators • Weighted Ordered Weighted Averaging WOWA operator (WOWA : R N → R ): WOWA p , w ( a 1 , ..., a N ) = � N i =1 ω i a σ ( i ) where ω i = w ∗ ( � j ≤ i p σ ( j ) ) − w ∗ ( � j<i p σ ( j ) ) , with σ a permutation of { 1 , ..., N } s. t. a σ ( i − 1) ≥ a σ ( i ) , and w ∗ a nondecreasing function that interpolates the points { ( i/N, � j ≤ i w j ) } i =1 ,...,N ∪ { (0 , 0) } . w ∗ is required to be a straight line when the points can be interpolated in this way. Vicen¸ c Torra; Modeling decisions UdG 2015 62 / 102

  66. Aggregation: WM, OWA, and WOWA operators • Construction of the w ∗ quantifier (a) (b) ( ) w w N N w w 2 2 ! 1 w 1 w 1 ! 1 � 0 � p � (1) p � (1) 1 = N 1 = N ::: 1 = N 0 0 0 0 p p p p p � (1) � (1) � (2) � ( N ) � (1) • Rationale for new weights ( ω i , for each value a i ) in terms of p and w . – If a i is small, and small values have more importance than larger ones, increase p i for a i (i.e., ω i ≥ p σ ( i ) ). (the same holds if the value a i is large and importance is given to large values) – If a i is small, and importance is for large values, ω i < p σ ( i ) (the same holds if a i is large and importance is given to small values). Vicen¸ c Torra; Modeling decisions UdG 2015 63 / 102

  67. Aggregation: WM, OWA, and WOWA operators • The shape of the function w ∗ gives importance – (a) to large values – (b) to medium values – (c) to small values – (d) equal importance to all values (a) (b) (c) (d) Vicen¸ c Torra; Modeling decisions UdG 2015 64 / 102

  68. Aggregation: WM, OWA, and WOWA operators Example. Application • Importance for constraints as given above: p = (0 . 5 , 0 . 3 , 0 . 15 , 0 . 05) • Compensation as given above: w = (1 / 3 , 1 / 3 , 1 / 3 , 0) (lowest value discarded) → WOWA with p and w . alternative Aggregation of the Satisfaction degrees WOWA ( x A , x B ) WOWA p , w ( C 1 , C 2 , C 3 , C 4 ) (2 , 2) WOWA p , w (0 , 0 . 5 , 1 , 1) 0.4666 (2 , 3) WOWA p , w (0 . 5 , 0 . 5 , 0 . 5 , 0 . 5) 0.5 (2 , 4) WOWA p , w (1 , 0 . 5 , 0 , 0 . 5) 0.8333 (3 . 5 , 2 . 5) WOWA p , w (1 , 0 . 5 , 0 . 5 , 0 . 5) 0.8333 (3 , 2) WOWA p , w (0 . 5 , 1 , 1 , 0 . 5) 0.8 (3 , 3) WOWA p , w (1 , 1 , 0 . 5 , 1) 1.0 Vicen¸ c Torra; Modeling decisions UdG 2015 65 / 102

  69. Aggregation: WM, OWA, and WOWA operators • Properties – The WOWA operator generalizes the WM and the OWA operator. ◦ When p = (1 /N . . . 1 /N ) , OWA WOWA p , w ( a 1 , ..., a N ) = OWA w ( a 1 , ..., a N ) for all w and a i . ◦ When w = (1 /N ... 1 /N ) , WM WOWA p , w ( a 1 , ..., a N ) = WM p ( a 1 , ..., a N ) for all p and a i . ◦ When w = p = (1 /N ... 1 /N ) , AM WOWA p , w ( a 1 , ..., a N ) = AM ( a 1 , ..., a N ) Vicen¸ c Torra; Modeling decisions UdG 2015 66 / 102

  70. Aggregation: from the weighted mean to fuzzy integrals Choquet integral Vicen¸ c Torra; Modeling decisions UdG 2015 67 / 102

  71. Choquet integrals • In WM, we combine a i w.r.t. weights p i . → a i is the value supplied by information source x i . Formally Vicen¸ c Torra; Modeling decisions UdG 2015 68 / 102

  72. Choquet integrals • In WM, we combine a i w.r.t. weights p i . → a i is the value supplied by information source x i . Formally – X = { x 1 , . . . , x N } is the set of information sources – f : X → R + the values supplied by the sources → then a i = f ( x i ) Thus, N N � � WM p ( a 1 , ..., a N ) = p i a i = p i f ( x i ) = WM p ( f ( x 1 ) , ..., f ( x N )) i =1 i =1 Vicen¸ c Torra; Modeling decisions UdG 2015 68 / 102

  73. Choquet integrals • In the WM, a single weight is used for each element I.e., p i = p ( x i ) (where, x i is the information source that supplies a i ) → when we consider a set A ⊂ X , weight of A ??? Vicen¸ c Torra; Modeling decisions UdG 2015 69 / 102

  74. Choquet integrals • In the WM, a single weight is used for each element I.e., p i = p ( x i ) (where, x i is the information source that supplies a i ) → when we consider a set A ⊂ X , weight of A ??? . . . fuzzy measures µ ( A ) Formally, – Fuzzy measure ( µ : ℘ ( X ) → [0 , 1] ), a set function satisfying (i) µ ( ∅ ) = 0 , µ ( X ) = 1 (boundary conditions) (ii) A ⊆ B implies µ ( A ) ≤ µ ( B ) (monotonicity) Vicen¸ c Torra; Modeling decisions UdG 2015 69 / 102

  75. Choquet integrals • Now, we have a fuzzy measure µ ( A ) then, how aggregation proceeds? ⇒ fuzzy integrals as the Choquet integral Vicen¸ c Torra; Modeling decisions UdG 2015 70 / 102

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend