neutrino a astrophys ysics cs c challenges a and p
play

Neutrino A Astrophys ysics cs: C Challenges a and P - PowerPoint PPT Presentation

Neutrino A Astrophys ysics cs: C Challenges a and P Possibilities Sovan C Chakraborty y MPI for Physics, Munich Institute of Physics, Bhubaneswar NEUTRINOS Chargeless Spin Weakly interacting Almost massless Ne Neutr


  1. Neutrino A Astrophys ysics cs: C Challenges a and P Possibilities Sovan C Chakraborty y MPI for Physics, Munich Institute of Physics, Bhubaneswar

  2. NEUTRINOS • Chargeless • Spin ½ • Weakly interacting • Almost massless Ne Neutr trin inos have have a a tin tiny bu but f finite m mass Neutrino o osci cillations No bending in magnetic fields è Point back to the source Minimal obstruction / scattering è Arrive directly from regions opaque to light.

  3. NEUTRINO SOURCES

  4. NEUTRINO SOURCE SPECTRA

  5. NEUTRINOS FROM SUN Solar Radiation: 98% light, 2% neutrinos Thermonuclear Reaction Chain 1938 66 billion neutrinos/cm 2 sec 1-10 MeV

  6. NEUTRINOS DETECTION Neutrino Detection (1954-1956) Reactor Anti-Electron Neutrinos were detected Clyde Cowan and Fred Reines Fred Reines (1918-1998), Nobel Prize 1995

  7. NEUTRINOS FROM SUN Solar Neutrino Detection Ray Da y Davis J Jr. ( (1914–2006) Homestake Solar neutrino Observatory Masatoshi Ko Koshiba ( (*1926) (1967-2002) Nobel Prize 2002 for Neutrino Inverse Beta Decay on Chlorine Astronomy

  8. SOLAR NEUTRINO PUZZLE Expectation Observation Solar Neutrino Detection Ray Davis Jr. (1914–2006) Masatoshi Koshiba (*1926) Homestake Solar neutrino Observatory (1967-2002) Nobel P Prize 2 2002 f for N Neutrino Inverse Beta Decay on Chlorine Astronomy y

  9. ATMOSPHERIC NEUTRINO PUZZLE Solution : Neutrino flavor oscillations

  10. NEUTRINO FLAVOR OSCILLATIONS cos sin ν ⎛ ⎞ θ θ ν ⎛ ⎞ ⎛ ⎞ e 1 Two flavor mixing = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ sin cos ν − θ θ ν ⎝ ⎠⎝ ⎠ ⎝ ⎠ 2 µ 2 m 2 2 p E m E i Each mass eigenstates propagates as e ipz with = − ≈ − i 2 E ip z -ip z ( ) z sin e cos e − ν = − θ 1 ν + θ 2 ν 1 2 µ 2 m L ⎛ ⎞ 2 Δ 2 2 P ( ) ( ) z (0) sin 2 sin 2 ν oscillation probability ν → ν = ν ν = θ ⎜ ⎟ e e µ µ 4 E ⎝ ⎠

  11. ATMOSPHERIC NEUTRINO PUZZLE Solution : Neutrino flavor oscillations ν μ and ν τ mix Measure

  12. SOLAR NEUTRINO PUZZLE Expectation Observation Solution : Neutrino flavor oscillations in matter ν e mixes with other flavors. Resonance mixing inside the Sun Measure

  13. RREACTOR AND GEO NEUTRINO Reactor Neutrinos: Confirmed oscillations through solar neutrino parameters even in vacuum Measure Geo Neutrinos: Produced by natural radioactivity in Earth’s crust KamLAND, Borexino Useful for understanding Earth’s radioactivity Neutrino Geophysics!!

  14. 3 ν ¡FRAMEWORK ¡and ¡OPEN ¡QUESTIONS ¡ Mixing parameters: U = U ( θ 12 , θ 13 , θ 23 , δ ) ¡ i 1 c e s c s − δ ⎛ ⎞ ν ν ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ c 12 = ¡cos ¡ θ 12 , ¡etc., ¡ ¡ e 13 13 12 12 1 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ c s 1 s c ν = − ν ⎜ ⎟ δ ¡CP ¡phase ¡ ¡ ⎜ ⎟ ⎜ 23 23 ⎟ ⎜ 12 12 ⎟⎜ 2 ⎟ µ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ i ⎟ s c e s c 1 − δ ν − − ν ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ 23 23 13 13 3 τ δ m 2 ¡ δ m 2 ¡ M 2 = - , + , ± Δ m 2 ¡ Mass-gap parameters: ¡ ¡ ¡ 2 2 “ solar ” � “ atmospheric ” �

  15. 3 ν ¡FRAMEWORK ¡and ¡OPEN ¡QUESTIONS ¡ δ m 2 ¡ δ m 2 ¡ M 2 = - , + , ± Δ m 2 ¡ Mass-gap parameters: ¡ ¡ ¡ 2 2 “ solar ” � “ atmospheric ” � Mass Ordering: Normal vs Inverted

  16. Neutrinos from Supernovae Sanduleak - 69 202 Supernova 1987A 23 February 1987

  17. …but ¡about ¡two ¡hours ¡before: ¡ Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ± 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ± 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s The ¡core ¡collapse ¡and ¡ ν ¡cooling ¡mechanism ¡confirmed! ¡

  18. Stellar Collapse and Core-Collapse Supernova Main-sequence star Helium-burning star Hydrogen Burning Helium Hydrogen Burning Burning [slides from G. Raffelt]

  19. Stellar Collapse and Core-Collapse Supernova Onion structure Collapse (implosion) [slides from G. Raffelt]

  20. Stellar Collapse and Core-Collapse Supernova Collapse (implosion)

  21. Stellar Collapse and Core-Collapse Supernova Collapse (implosion)

  22. Stellar Collapse and Core-Collapse Supernova Newborn Neutron Star Collapse (implosion) ~ 50 km Neutrino Cooling Proto-Neutron Star ρ ≈ ρ nuc = 3 × 10 14 g cm - 3 T ≈ 30 MeV

  23. Stellar Collapse and Core-Collapse Supernova Newborn Neutron Star ~ 50 km ENERGY SCALE: 99% energy (10 53 ergs ) is emitted by neutrinos (Energy ~ 10 MeV). TIME SCALE: Neutrino Cooling The duration of the burst lasts ~10s. Proto-Neutron Star ρ ≈ ρ nuc = 3 × 10 14 g cm - 3 T ≈ 30 MeV

  24. Shock Revival by Neutrinos Shock receive fresh energy from neutrinos!! Delayed Mechanism

  25. Growing S Set o of 2 2D Ex D Exploding M Models Realistic neutrino transport, convection and turbulence, hydrodynamical instabilities (SASI). Hanke et al, 1303.6269

  26. Failed Ex Explosion Tamborra ¡et ¡al., ¡arXiv:1402.5418 ¡

  27. Status of SN Explosion • Standard paradigm for many years: Neutrino-driven explosion (delayed explosion, Wilson mechanism) • Numerical explosions ok for small-mass progenitors in 1D (spherical symmetry) • Numerical explosions ok for broad mass range in 2D (axial symmetry) • 3D studies only beginning – no clear picture yet Better spatial resolution needed?

  28. Sky M y Map o of L Lepton-N -Number F Flux ( (11.2 M M SUN SUN M Model) — ( 𝝃 𝒇 − 𝝃 𝒇 ) r Lepton-n -number f flux ( relative t to 4 4 π average average De Deleptonization f flux i into o one h hemisphere, r roughly d y dipole d distribution (LES ESA — — L Lepton Em Emission S Self-S -Sustained A Asym ymmetry) y) Tamborra ¡et ¡al., ¡arXiv:1402.5418 ¡

  29. LESA Schematic Description Accre&on ¡flow ¡ Tamborra ¡et ¡al., ¡ ¡arXiv:1402.5418 ¡

  30. Neutrino Average Energy Accre&on ¡ powered by infalling • matter Stalled shock • Flavor Oscillation can Accretion: ~ 0.5 s — give harder 𝝃 𝒇 and 𝝃 𝒇 and 𝝃 𝒇 spectra 𝝃 μ , τ — 𝝃 𝒇 𝝃 𝒇 [Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M sun progenitor mass]

  31. Neutrino Emission Phases Accre&on ¡ powered by infalling • matter Stalled shock • Flavor Oscillation can Accretion: ~ 0.5 s — give harder 𝝃 𝒇 and 𝝃 𝒇 and 𝝃 𝒇 spectra 𝝃 μ , τ Instabilities in neutrino — 𝝃 𝒇 evolution due to Neutrino-Neutrino interaction 𝝃 𝒇 EXTRA Heating??? [Fischer et al. (Basel Simulations), A&A 517:A80,2010, 10. 8 M sun progenitor mass]

  32. Stability A y Analys ysis 10.8 Solar Mass, 225 ms Basel simulation 225 ms 1000 SN density profile crossing the 100 λ (km -1 ) instability zone may trigger 10 flavor conversion 1 0.1 100 150 200 300 500 700 1000 1500 2000 Radius (km) S.C , Mirizzi, Saviano & Seixas PRD, 2014

  33. LESA Schematic Description LESA lepton asymmetry Large lepton asymmetry prohibits instability in neutrino evolution S.C , Raffelt, Janka & Mueller, arXiv:1412.0670

  34. Stability A y Analys ysis: L LES ESA Minimum lepton Asymmetry Maximum lepton Asymmetry 10 4 10 4 Ε � � 0.05 Ε � 0.5 1000 1000 Ε � 0.00 Ε � 1.0 Ε � 0.05 Λ � km � 1 � 100 Ε � 1.5 Λ � km � 1 � 100 Ε � 0.20 10 10 1 1 0.1 0.1 100 150 200 300 500 700 1000 1500 100 150 200 300 500 700 1000 1500 Radius � km � Radius � km � S.C , Raffelt, Janka & Mueller, arXiv:1412.0670

  35. Stability A y Analys ysis: L LES ESA Minimum lepton Asymmetry 10 4 Ε � � 0.05 1000 0.00 Ε � 0.05 Λ � km � 1 � 100 Ε � 0.20 Ε � 10 1 0.1 100 150 200 300 500 700 1000 1500 Radius � km �

  36. High Energy Neutrinos

  37. South Pole (completed in 201

  38. What do we know? South Pole (completed in 201

  39. Background and Signals Atmospheric neutrino & muon production in cosmic ray air showers. Muons are absorbed inside the Earth. Only events from above. Atmospheric neutrino background From North and South. Earth becomes opaque to high-energy neutrinos! PeV events are coming from above.

  40. � � � � � � � � Event classes in IceCube Tracks Cascades muon cascade ta) ta) Source: � Source: � ν e , ν µ , ν τ NC + ν e CC interaction � ν µ CC interaction � Limited angular resolution ( ≳ 10°) � Good angular resolution (<1°) � Good energy resolution � Moderate energy resolution �

  41. PeV Events in IceCube • Shown at Neutrino’12 • Both downgoing cascades • Expected background: 0.082 January 3rd, 2012 August 9th, 2011 1 . 14 ± 0 . 17 PeV 1 . 04 ± 0 . 16 PeV IceCube Collaboration, PRL 111, 021103(2013)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend