the dagger lambda calculus
play

The dagger lambda calculus Philip Atzemoglou University of Oxford - PowerPoint PPT Presentation

The dagger lambda calculus Philip Atzemoglou University of Oxford Quantum Physics and Logic 2014 Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 1 / 20 Why higher-order? Teleportation should be the same: =


  1. The dagger lambda calculus Philip Atzemoglou University of Oxford Quantum Physics and Logic 2014 Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 1 / 20

  2. Why higher-order? Teleportation should be the same: = Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 2 / 20

  3. Why higher-order? Teleportation should be the same: = Regardless of whether you are teleporting A ψ a state Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 2 / 20

  4. Why higher-order? Teleportation should be the same: = Regardless of whether you are teleporting A ∗ A A ψ f a state or a function Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 2 / 20

  5. Why higher-order? + My Files My Files My Papers My Music Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 3 / 20

  6. Why higher-order? + My Files + f My Files f My Papers a ∗ My Music b Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 3 / 20

  7. Terms � term � ::= variable | constant | � term � ⊗ � term � | � term � ∗ Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 4 / 20

  8. Terms � term � ::= variable | constant | � term � ⊗ � term � | � term � ∗ i . e . x , y , z | | t 1 ⊗ t 2 | f ∗ , ( t 1 ⊗ t 2 ) ∗ c Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 4 / 20

  9. Types � type � ∗ � type � ::= atomic | � type � ⊗ � type � | Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 5 / 20

  10. Types � type � ∗ � type � ::= atomic | � type � ⊗ � type � | ( A ⊗ B ) ∗ , A ∗ ⊗ A i . e . A , B , C | A ⊗ B | Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 5 / 20

  11. Linear negation Involutive: ( a ∗ ) ∗ ≡ a and ( A ∗ ) ∗ ≡ A Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 6 / 20

  12. Linear negation Involutive: ( a ∗ ) ∗ ≡ a and ( A ∗ ) ∗ ≡ A & Is ⊗ equal to ? Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 6 / 20

  13. Linear negation Involutive: ( a ∗ ) ∗ ≡ a and ( A ∗ ) ∗ ≡ A & Is ⊗ equal to ? Almost: Planar negation: ( a ⊗ b ) ∗ := b ∗ ⊗ a ∗ and ( A ⊗ B ) ∗ := B ∗ ⊗ A ∗ Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 6 / 20

  14. The soup A set of connections between equityped terms. These connections correspond to connecting wires in a categorical diagram: S = { x 1 : x 2 , f : x 2 ∗ ⊗ x 3 , x 3 : x 4 } 4 2 2 3 f 1 Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 7 / 20

  15. Switchboard Used in compliance with the CC-Attribution license of the original from: https://www.flickr.com/photos/glenbledsoe/6245440290/ Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 8 / 20

  16. Sequents t 1 : A 1 , t 2 : A 2 , . . . , t n : A n ⊢ S t : B Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 9 / 20

  17. Reconstructing λ λ a . b := a ∗ ⊗ b A ⊸ B := A ∗ ⊗ B Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 10 / 20

  18. Representing connections between wires D E g f B ∗ B A C Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 11 / 20

  19. Representing connections between wires D E a : A , c : C ⊢ S d ⊗ e : D ⊗ E g f B ∗ B where � f � : λ ( a ⊗ b ∗ ) . d , S = : λ ( b ⊗ c ) . e g A C Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 12 / 20

  20. Sequent rules Id, x : A ⊢ x : A a : A ⊢ S b : B Negation, a ∗ : A ∗ ⊢ S ∗ b ∗ : B ∗ Γ , a : A , b : B ⊢ S c : C ⊗ L , Γ , a ⊗ b : A ⊗ B ⊢ S c : C Γ , a : A , b : B , ∆ ⊢ c : C Exchange, Γ ⊢ S 1 a : A ∆ ⊢ S 2 b : B Γ , b : B , a : A , ∆ ⊢ c : C Γ , � ∆ ⊢ S 1 ∪ S 2 a ⊗ b : A ⊗ B ⊗ R , Γ ⊢ S ∪{ i ∗ :1 } b : B λ Γ , a ′ : A , ∆ ⊢ S 2 b : B Cut, Γ ⊢ S 1 a : A i : I , Γ ⊢ S b : B Γ , ∆ ⊢ S 1 ∪ S 2 ∪{ a : a ′ } b : B Γ ⊢ S ∪{ i ∗ :1 } b : B ρ Γ . a : A , Γ ⊢ S b : B Γ , i : I ⊢ S b : B Curry, Γ ⊢ S a ∗ ⊗ b : A ∗ ⊗ B Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 13 / 20

  21. † -flip a : A ⊢ S b : B † -flip b : B ⊢ S ∗ a : A Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 14 / 20

  22. † -flip a : A ⊢ S b : B Negation a ∗ : A ∗ ⊢ S ∗ b ∗ : B ∗ a : A ⊢ S b : B Uncurry b : B , a ∗ : A ∗ ⊢ S ∗ † -flip b : B ⊢ S ∗ a : A Exchange a ∗ : A ∗ , b : B ⊢ S ∗ Curry b : B ⊢ S ∗ a : A Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 14 / 20

  23. Soup reduction The soup propagation rules are bifunctoriality , trace and cancellation : S ∪ { a ⊗ b : c ⊗ d } − → S ∪ { a : c , b : d } S ∪ { x : A x } − → S ∪ { D A : 1 } S ∪ { 1 : 1 } − → S Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 15 / 20

  24. Soup reduction The soup propagation rules are bifunctoriality , trace and cancellation : S ∪ { a ⊗ b : c ⊗ d } − → S ∪ { a : c , b : d } S ∪ { x : A x } − → S ∪ { D A : 1 } S ∪ { 1 : 1 } − → S Our soup rules also contain a consumption rule : � � � [ t / u ] , if u has no constants Γ ⊢ S ∪{ t : u } b : B − → Γ ⊢ S b : B [ u / t ] , if t has no constants Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 15 / 20

  25. Application Application is defined as a notational shorthand, representing a variable and a connection in the soup. The origins of the application affect the structure of its corresponding soup connection: ft : B , Γ ⊢ c : C := x : B , Γ ⊢ { f : t ∗ ⊗ x } ∗ c : C and Γ ⊢ ft : B := Γ ⊢ { f : t ∗ ⊗ x } x : B For an application originating inside our soup, we have: { ft : c } := { x : c } ∪ { f : t ∗ ⊗ x } and { c : ft } := { c : x } ∪ { f : t ∗ ⊗ x } ∗ Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 16 / 20

  26. Properties Subject reduction Consistency Strong normalisation Confluence Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 17 / 20

  27. Curry-Howard-Lambek correspondence Dagger Categorical Quantum Lambda Logic Calculus Dagger Compact Categories Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 18 / 20

  28. Curry-Howard-Lambek correspondence Categorical Dagger Quantum Lambda Logic Calculus Dagger Compact Categories Internal language for dagger compact categories Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 19 / 20

  29. Conclusion Future work: Extend to cover complementary classical structures and dualisers Support for the non-determinacy of measurements Higher-order representation for MBQC Thanks are due to: Samson Abramsky, Bob Coecke, Prakash Panangaden, Jonathan Barrett, ... and many others ... Philip Atzemoglou (University of Oxford) The dagger lambda calculus QPL 2014 20 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend