from random poincar e maps to stochastic mixed mode
play

From random Poincar e maps to stochastic mixed-mode-oscillation - PowerPoint PPT Presentation

From random Poincar e maps to stochastic mixed-mode-oscillation patterns Nils Berglund MAPMO, Universit e dOrl eans CNRS, UMR 7349 & F ed eration Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund


  1. From random Poincar´ e maps to stochastic mixed-mode-oscillation patterns Nils Berglund MAPMO, Universit´ e d’Orl´ eans CNRS, UMR 7349 & F´ ed´ eration Denis Poisson www.univ-orleans.fr/mapmo/membres/berglund nils.berglund@math.cnrs.fr Collaborators: Barbara Gentz (Bielefeld), Christian Kuehn (Vienna) Sixth Workshop on Random Dynamical Systems Bielefeld, October 31, 2013

  2. Mixed-mode oscillations (MMOs) Belousov-Zhabotinsky reaction [Hudson 79] Stellate cells [Dickson 00] Mean temperature based on ice core measurements [Johnson et al 01] 1

  3. Mixed-mode oscillations (MMOs) Belousov-Zhabotinsky reaction [Hudson 79] Stellate cells [Dickson 00] ⊲ Deterministic models reproducing these oscillations exist and have been abundantly studied They often involve singular perturbation theory ⊲ We want to understand the effect of noise on oscillatory patterns Noise may also induce oscillations not present in deterministic case 1-a

  4. The deterministic Koper model x = f ( x, y, z ) = y − x 3 + 3 x ε ˙ y = g 1 ( x, y, z ) = kx − 2( y + λ ) + z ˙ z = g 2 ( x, y, z ) = ρ ( λ + y − z ) ˙ ⊲ 0 < ε ≪ 1 ⊲ k, λ, ρ ∈ R : control parameters 2

  5. The deterministic Koper model x = f ( x, y, z ) = y − x 3 + 3 x ε ˙ y = g 1 ( x, y, z ) = kx − 2( y + λ ) + z ˙ z = g 2 ( x, y, z ) = ρ ( λ + y − z ) ˙ ⊲ 0 < ε ≪ 1 ⊲ k, λ, ρ ∈ R : control parameters ⊲ Critical manifold: C 0 = { f = 0 } = { y = x 3 − 3 x } ⊲ Folds: L = { f = 0 , ∂ x f = 0 } = { y = x 3 − 3 x, x = ± 1 } = L + ∪ L − 2-a

  6. Critical manifold x ≫ 1 ˙ Fold Stable critical manifold Unstable critical manifold y Stable critical manifold x z x ≪ − 1 ˙ Fold 3

  7. The deterministic Koper model x = f ( x, y, z ) = y − x 3 + 3 x ε ˙ y = g 1 ( x, y, z ) = kx − 2( y + λ ) + z ˙ z = g 2 ( x, y, z ) = ρ ( λ + y − z ) ˙ ⊲ 0 < ε ≪ 1 ⊲ k, λ, ρ ∈ R : control parameters ⊲ Critical manifold: C 0 = { f = 0 } = { y = x 3 − 3 x } 4

  8. The deterministic Koper model x = f ( x, y, z ) = y − x 3 + 3 x ε ˙ y = g 1 ( x, y, z ) = kx − 2( y + λ ) + z ˙ z = g 2 ( x, y, z ) = ρ ( λ + y − z ) ˙ ⊲ 0 < ε ≪ 1 ⊲ k, λ, ρ ∈ R : control parameters ⊲ Critical manifold: C 0 = { f = 0 } = { y = x 3 − 3 x } ⊲ Reduced flow on C 0 (Fenichel theory) : eliminate y x = kx − 2( x 3 − 3 x + λ ) + z ˙ 3( x 2 − 1) z = ρ ( λ + x 3 − 3 x − z ) ˙ ⋉ Generic fold points: ˙ x diverges as x → ± 1 ⋊ ⋉ Folded node singularity: ˙ x finite, ⋊ (desingularized) system has a node 4-a

  9. Folded node singularity Normal form [Beno ıt, Lobry ’82, Szmolyan, Wechselberger ’01] : ˆ x = y − x 2 ǫ ˙ y = − ( µ + 1) x − z ˙ ( + higher-order terms ) z = µ ˙ 2 5

  10. Folded node singularity Normal form [Beno ıt, Lobry ’82, Szmolyan, Wechselberger ’01] : ˆ x = y − x 2 ǫ ˙ y = − ( µ + 1) x − z ˙ ( + higher-order terms ) z = µ ˙ 2 y C r 0 C a 0 L z x 5-a

  11. Folded node singularity Theorem [Beno ıt, Lobry ’82, Szmolyan, Wechselberger ’01] : ˆ For 2 k + 1 < µ − 1 < 2 k + 3, the system admits k canard solutions The j th canard makes (2 j + 1) / 2 oscillations Mixed-mode oscillations (MMOs) Picture: Mathieu Desroches 6

  12. Global dynamics Fold Stable critical manifold Canard Stable critical Folded node manifold Fold ⊲ Canard orbits track unstable manifold (for some time) Typical orbits may jump earlier 7

  13. Global dynamics Fold Typical orbit Stable critical manifold Canard Stable critical Folded node manifold Fold ⊲ Canard orbits track unstable manifold (for some time) ⊲ Typical orbits may jump earlier to stable manifold 7-a

  14. Poincar´ e map c.f. e.g. [Guckenheimer, Chaos, 2008] Fold Σ Stable critical Folded node manifold Fold ⊲ Poincar´ e map Π : Σ → Σ, invertible, 2-dimensional ⊲ Due to contraction along C 0 , close to 1d, non-invertible map 8

  15. Poincar´ e map z n �→ z n +1 -8.0 -8.1 -8.2 -8.3 -8.4 -8.5 -8.6 -8.7 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 -8.2 -8.1 -8.0 -7.9 -7.8 k = − 10 , λ = − 7 . 35 , ρ = 0 . 7 , ε = 0 . 01 9

  16. The stochastic Koper model d x t = 1 εf ( x t , y t , z t ) d t + σ √ εF ( x t , y t , z t ) d W t d y t = g 1 ( x t , y t , z t ) d t + σ ′ G 1 ( x t , y t , z t ) d W t d z t = g 2 ( x t , y t , z t ) d t + σ ′ G 2 ( x t , y t , z t ) d W t ⊲ W t : k -dimensional Brownian motion ⊲ σ, σ ′ : small parameters (may depend on ε ) 10

  17. The stochastic Koper model d x t = 1 εf ( x t , y t , z t ) d t + σ √ εF ( x t , y t , z t ) d W t d y t = g 1 ( x t , y t , z t ) d t + σ ′ G 1 ( x t , y t , z t ) d W t d z t = g 2 ( x t , y t , z t ) d t + σ ′ G 2 ( x t , y t , z t ) d W t L − L + z (a) y L − (b) C a − 0 x C a + 0 x L + z x (c) s 10-a

  18. The stochastic Koper model d x t = 1 εf ( x t , y t , z t ) d t + σ √ εF ( x t , y t , z t ) d W t d y t = g 1 ( x t , y t , z t ) d t + σ ′ G 1 ( x t , y t , z t ) d W t d z t = g 2 ( x t , y t , z t ) d t + σ ′ G 2 ( x t , y t , z t ) d W t Random Poincar´ e map In appropriate coordinates σ � d ϕ t = ˆ f ( ϕ t , X t ) d t + ˆ F ( ϕ t , X t ) d W t ϕ ∈ R σ � d X t = ˆ g ( ϕ t , X t ) d t + ˆ G ( ϕ t , X t ) d W t X ∈ E ⊂ Σ ⊲ all functions periodic in ϕ (say period 1) ⊲ ˆ f � c > 0 and ˆ σ small ⇒ ϕ t likely to increase ⊲ process may be killed when X leaves E 10-b

  19. Random Poincar´ e map X E X 1 X 2 X 0 ϕ 1 2 ⊲ X 0 , X 1 , . . . form (substochastic) Markov chain 11

  20. Random Poincar´ e map X E X 1 X 2 X 0 ϕ 1 2 ⊲ X 0 , X 1 , . . . form (substochastic) Markov chain ⊲ τ : first-exit time of Z t = ( ϕ t , X t ) from D = ( − M, 1) × E ⊲ µ Z ( A ) = P Z { Z τ ∈ A } : harmonic measure (wrt generator L ) ⊲ [Ben Arous, Kusuoka, Stroock ’84] : under hypoellipticity cond, µ Z admits (smooth) density h ( Z, Y ) wrt Lebesgue on ∂ D ⊲ For B ⊂ E Borel set � P X 0 { X 1 ∈ B } = K ( X 0 , B ) := B K ( X 0 , d y ) where K ( x, d y ) = h ((0 , x ) , (1 , y )) d y =: k ( x, y ) d y 11-a

  21. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 0 12

  22. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 2 · 10 − 7 12-a

  23. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 2 · 10 − 6 12-b

  24. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 2 · 10 − 5 12-c

  25. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 2 · 10 − 4 12-d

  26. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 2 · 10 − 3 12-e

  27. Poincar´ e map z n �→ z n +1 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.2 -9.1 -9.0 -8.9 -8.8 -8.7 -8.6 -8.5 -8.4 -8.3 k = − 10 , λ = − 7 . 6 , ρ = 0 . 7 , ε = 0 . 01 , σ = σ ′ = 10 − 2 12-f

  28. Random Poincar´ e map Observations: ⊲ Size of fluctuations depends on noise intensity and canard number k : high order canards are more sensitive ⊲ Saturation effect: constant distribution of z n +1 for k > k c ( σ, σ ′ ) ⊲ Consequence: if k c < k ∗ det , number of SAOs increases 13

  29. Random Poincar´ e map Observations: ⊲ Size of fluctuations depends on noise intensity and canard number k : high order canards are more sensitive ⊲ Saturation effect: constant distribution of z n +1 for k > k c ( σ, σ ′ ) ⊲ Consequence: if k c < k ∗ det , number of SAOs increases Questions: ⊲ Prove saturation effect ⊲ How does k c depend on σ, σ ′ ? ⊲ How does size of fluctuations depend on σ, σ ′ and canard number k ? ⊲ In particular, size of fluctuations for k > k c ? 13-a

  30. Size of noise-induced fluctuations ζ t = ( x t , y t , z t ) − ( x det , y det , z det ) t t t d ζ t = 1 εA ( t ) ζ t d t + σ √ ε F ( ζ t , t ) d W t + 1 b ( ζ t , t ) d t � �� � ε = O ( � ζ t � 2 ) � t � t 0 U ( t, s ) F ( ζ s , s ) d W s + 1 ζ t = σ 0 U ( t, s ) b ( ζ s , s ) d s √ ε ε where U ( t, s ) principal solution of ε ˙ ζ = A ( t ) ζ . 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend