foundations for stochastic systems
play

Foundations*for*Stochastic* Systems* Sriram*Sankaranarayanan* - PowerPoint PPT Presentation

Foundations*for*Stochastic* Systems* Sriram*Sankaranarayanan* University*of*Colorado,*Boulder* Joint*Work*with* Aleksandar*Chakarov* Stochastic*Systems* Discrete*Time,** Continuous*Time,** Finite*State* Finite*State* S 1 * 0.9* 0.9* S 1


  1. Foundations*for*Stochastic* Systems* Sriram*Sankaranarayanan* University*of*Colorado,*Boulder*

  2. Joint*Work*with* Aleksandar*Chakarov*

  3. Stochastic*Systems* Discrete*Time,** Continuous*Time,** Finite*State* Finite*State* S 1 * 0.9* 0.9* S 1 * 0.8* 0.8* S 0 * S 0 * S 3 * S 2 * S 3 * S 2 * 0.2* 0.2* 0.1* Discrete*Time,** Continuous*Time,** Infinite*State* infinite*State* x 0 = F ( x , w ) d x = f ( x , t ) dt + g ( x , t ) dw

  4. Analyzing*Stochastic*Systems* Random* Outputs* Inputs* Stochastic*System* Goal:*Bounds*on*probability*that*the*system* satisfies*properties.*

  5. Insulin*Infusion* Meals,*Physical* Activity** Blood*Glucose* Glucose** Sensor* Insulin* Noise*+*Delays* Delays*+**Set*Failures* InsulinQInfusion* Insulin* Infusion* Control* Pump* Failure*Probability*<*10 Q6 * [Cameron*et*al.,*DallaQMan*et*al.,*Doyle*et*al.,*Hovorka*et*al.]*

  6. Analysis*of*Stochastic*Systems** Statistical*Guarantees* Mathematical*Guarantees* Model* Statistical* Prob.*Abstract* Deductive* “MonteQCarlo”* Checking* Model** Interpretation* Techniques* Simulations* Checking* PRISM:** McIver+Morgan* [Rubenstein*+*Kroese,* Kwiatkowska*et*al.* Chakarov+S* Younes+Simmons,*Jha*et*al,** Clarke*+*Zuliani,*Legay*et*al,*…]* Monniaux** Cousot*+*Monerau**

  7. Rest*of*the*Talk* • An*Illustrative*(Toy)*Example* – Dubins*Vehicle*on*a*Tarmac* • Concentration*of*Measure* • (Super)*Martingales* • Synthesizing*Super*Martingales* • Concluding*Thoughts*

  8. Example:*Dubins*Vehicle*with* Steering*Errors* θ y 0 y + 0 . 1 θ = Disturb* Dubin’s* Vehicle* θ 0 0 . 99 θ + w = w ∼ Uniform ( − 0 . 01 , 0 . 01) Feedback* SteeringAngle* y ≥ 1 ∧ θ > 0 ( x, y, θ ) y ≤ − 1 ∧ θ < 0

  9. Intermediate*Distributions* n=95* Histogram* of*y*values* n=500* for*Dubins* Vehicle* n=1000* Monniaux,*Kwiatkowska*et* al,**Mardziel*et*al,* S*et*al.,**Abate*et*al.,* Xiu*and*Karandiakis,…*

  10. Deductive*Approach* Deduce*facts*about*the*distributions.* Without*approximating*it.* Martingale* y 0 y + 0 . 1 θ = θ 0 0 . 99 θ + w = y + 10 θ w ∼ Uniform ( − 0 . 01 , 0 . 01) Prajna+Jadbabaie+Pappas’04* McIver+Morgan’06* Steinhardt+Tedrake’13* Chakarov+S’13,’14*

  11. Martingale:*Background* Stochastic*Process* X 0 , X 1 , X 2 , X 3 , . . . Martingale* E ( X n +1 | X n , . . . , X 0 ) = X n E ( X 4 | x 3 , . . . , x 0 ) = x 3 X* x 2 x 3 x 0 x 1 X 4 Time*

  12. Super*Martingales* Martingale* E ( X n +1 | X n ) = X n Super*Martingale* E ( X n +1 | X n ) ≤ X n

  13. Martingale:*Example* Martingale* y 0 y + 0 . 1 θ = θ 0 0 . 99 θ + w = y + 10 θ w ∼ Uniform ( − 0 . 01 , 0 . 01) θ n +1 y n +1 E ( y n +1 + 10 θ n +1 | y n , θ n ) = y n + 0 . 1 θ n + 10(0 . 99 θ n + E ( w n )) = y n + 10 θ n

  14. Azuma’s*Inequality* “Martingales*do*not*stray*too* far*from*their*starting*values”* X n t* X 0 Pr ( X n − X 0 ≥ t ) ⇣ ⌘ t 2 Pr ( X n − X 0 ≥ t ) ≤ exp − 2 nC 2 Azuma’67,*Hoeffding’63*

  15. Application*of*Azuma*Inequality* Probability*that*system*enters*failure* set*within*first*N*steps.* Safe*Set* Initial* Dist.* 1. Find*a*(super)*martingale*f(x)* 2. Bound*f(x)*for*failure*set* 3. Pr*(Enter*Failure*Set)*<=*Pr*(Martingale*exceeds*bound).*

  16. Dubin’s*Car* M : y + 10 θ y ≥ 1 ∧ θ > 0 ( x, y, θ ) y ≤ 1 ∧ θ < 0 failure ⇒ | M | > 1 Azuma*Inequality* Pr ( failure ) ≤ 0 . 013 Bound*

  17. y x Road%Width% Azuma%Bound% MC%Estimate%(10 5 %sims)% 0*(no*failures*seen)* [;1,1]% <=*0.013* [;1.5,1.5]% <=*2.7x10 Q5 * 0*(no*failures*seen)* 0*(no*failures*seen)* [;2,2]% <=*4.2x10 Q9 * [;2.5,2.5]% <=*5.4x10 Q14 * 0*(no*failures*seen)*

  18. Discovering*Martingales* 1. Fix*a*desired*form*for*the*(super)*martingale.* c 1 y + c 2 θ + c 3 y 2 + c 4 y θ + c 5 θ 2 2. Encode*the*conditions*for*being*a* martingale.* 1. Linear*Systems:*Farkas*Lemma*(dualization)* 2. Polynomial*Systems:*SumQOfQSquares* Programming* 3. Bernstein*Polynomials* 3. Solve*to*obtain*(super)*martingales*

  19. Discovering*Super*Martingales* x + 0 . 1(1 − 1 2 θ 2 ) := x := y + 0 . 1 θ y := 0 . 99 θ + 0 . 1 w θ 2 . 985 n + 150 θ 2 − − 2 . 985 x Martingale 10 θ + y Martingale 2000 θ y − 199 n + 100 y 2 + 1990 x Martingale SuperMartingale 49 n − 500 x SuperMartingale 1000 θ − n SuperMartingale 10 x − n − n − 1000 θ SuperMartingale

  20. Beyond*Martingales* E ( X n | X n − 1 ) ≤ X n − 1 Super*Martingales*     X 1 ,n X 1 ,n − 1 Expectation* E  ≤ M     . . Invariants* . .    . . X m,n X m,n − 1 Nonnegative* Matrix* Abstract*Interpretation** techniques*for*discovering* Chakarov*+*S’*2014* Expectation*Invariants*

  21. Concluding*Thoughts* • Martingales*+*Concentration*of*Measure:** – Prove*bounds*on*extremely*rare*events.* – Depends*critically*on*finding*the*“right”*martingale.* – Promising*approaches*[*Previous*Talk* ! *]* • Continuous*Time*Systems:* – Theory*extends*naturally.* – Different*kinds*of*concentration*of*measure* inequalities .* – * [*Prajna+Jadbabaie+Pappas,Steinhardt+Tedrake,**Platzer]*

  22. Support* This*work*was*supported*in*part* by*the*US*National*Science** Foundation*under*award*#s** CNSQ1320069,*CNSQ0953941*and** CNSQ1016994.**All*opinions*expressed* are*those*of*the*speaker*and*not** necessarily*of*NSF.* *

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend