flight control design using backstepping
play

Flight Control Design Using Backstepping Ola Hrkegrd, T orkel Glad - PDF document

Flight Control Design Using Backstepping Ola Hrkegrd, T orkel Glad Linkping University Background Can you design a single c ontroller that will give stability and performance throughout the entire flight regime? Avoid tedious


  1. Flight Control Design Using Backstepping Ola Härkegård, T orkel Glad Linköping University Background Can you design a single c ontroller that will give stability and performance � throughout the entire flight regime? � Avoid tedious gain-scheduling. � Previous work: feedback linearization. T ry backstepping! T ry backstepping! ���� 1

  2. Controller overview δ r u Pre- S tate Control filter feedback alloc. x Control objectives β α p s p = ref β = α = α p ref 0 s s 2

  3. Angle of attack dynamics L α − M L ( ) mg α = − + q � α mV V α δ M ( , q , ) = q � J δ Aerodynamic efforts 2 0.5 1 0 C m C L 0 -1 -0.5 -40 -40 -20 -20 0 0 40 40 20 20 0 0 δ (deg) δ (deg) α (deg) α (deg) 3

  4. Ideas for control design � Linearize the airc raft dynamic s for a set of flight cases ( gain-scheduling ). � Cancel the nonlinear system behaviour using feedback ( feedback linearization ). � Refrain from canc elling “ harmless” nonlinearities ( backstepping ). 2-stage control design α − L ( ) mg ( ) α = − + = α + q f q � mV � Dynamic s: α δ M ( , q , ) = = q u � J ( ) = α 1. Design . u k , q 2. Allocate control surfac es. 4

  5. Backstepping ( ) α = α + � First c onsider f q � ( ) α f α α ref � Virtual c ontrol law: ( ) ( ) = − α − α − α q f k des ref 1 ref Backstepping, contd. � Create Lyapunov function ( ) ( ) = α − α + − 2 V F q q ref des � Demand dV = − < W 0 dt and solve for u. 5

  6. Resulting control law � Backstepping ( ) ( ( ) ) = − α − α − + α u k k q f 1 ref 2 ref � Feedback linearization ( ) ( ( ) ) ( ( ) ) ′ = − α − α − + α + α u k k f q f 1 ref 2 Step responses ref = ref = α α 60 deg 20 deg 30 60 α [deg] α [deg] 20 40 20 10 0 0 0 2 4 6 8 0 2 4 6 8 200 100 q [deg/s] q [deg/s] 0 0 -100 -200 0 2 4 6 8 0 2 4 6 8 500 1000 u [deg/s 2 ] u [deg/s 2 ] 0 0 -500 -1000 0 2 4 6 8 0 2 4 6 8 time [s] time [s] 6

  7. Step responses ref = ref = α α 20 deg 60 deg 30 80 60 20 α (deg) α (deg) 40 10 20 0 0 0 2 4 6 8 0 2 4 6 8 500 1000 2 ) 2 ) u (deg/s u (deg/s 0 0 -500 -1000 0 2 4 6 8 0 2 4 6 8 time (s) time (s) Control law properties ( ) α δ M , q , ( ) ( ( ) ) = − α − α − + α k k q f 1 ref 2 ref J � Global stability. d α . � Does not involve dL/ � Inverse optimal ⇒ gain margin. 7

  8. Full controller α =f 1 ( α , β , p s )+q �  ( ) ⇒ = α α β ref  u k , , q , , p 1 1 s q  =u 1 � =f 2 ( β , α )+r s β �  ( ) ⇒ = β  u k , r 2 2 s r  =u 2 � s ( ) } ⇒ = ref − p =u 3 � u K p p s 3 s s ( ( ) ) = − δ − ω × ω 1 u SJ M J Simulations 20 200 p s (deg/s) 100 α (deg) 10 0 0 -100 0 5 10 0 5 10 5 20 0 β (deg) δ (deg) 0 -20 Aileron Elevator Rudder -5 -40 0 5 10 0 5 10 time (s) 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend