fine particles separation in recovered paper suspensions
play

Fine particles separation in recovered paper suspensions Wagner, - PowerPoint PPT Presentation

Fine particles separation in recovered paper suspensions Wagner, J.; Putz, H.-J.; Schabel, S.* * Technische Universitt Darmstadt Chair for Paper Science and Mechanical Process Engineering (PMV) 8 th Research Forum on Recycling Niagara


  1. Fine particles separation in recovered paper suspensions Wagner, J.; Putz, H.-J.; Schabel, S.* * Technische Universität Darmstadt Chair for Paper Science and Mechanical Process Engineering (PMV) 8 th Research Forum on Recycling Niagara Falls, ON Canada, 9/2007 Abb. 1

  2. � Introduction: Why separating organic from anorganic fines? � How to quantify progress: Why lack of measurement techniques is a major problem � Our approach for measurement: - particle size distribution - settling velocity - image analysis � Separation results Overview Abb. 2

  3. Raw material consumption in 2005 in Germany: 25.5 million tons for 21.7 million tons paper production chemical pulp 20% mechanical pulp 7% chemical additives 4% recovered paper 56% fillers and coating pigments 13% Raw materials for paper production Abb. 3

  4. • Packaging paper - Pulp - Filtrate from thickeners - Filtrate from paper machine wire • Graphic paper - Flotation foam and sludge • Tissue paper - Washer filtrate Recovered paper suspensions to be considered Abb. 4

  5. Inorganic and organic components in a flotation foam of a stock preparation for graphic recycling paper Abb. 5

  6. • Inorganic fines from fillers and coating pigments cause lower strength properties fibre binding area inorganic components • Effect of organic fines depends on surface condition: degree of fibrillation strength properties • Flotation and washing separate both components from longer fibre material � low selectivity, losses during paper production Fines in recovered paper suspensions Abb. 6

  7. • Sedimentation-Balance h • Sedi-Graph (X-Ray) • Manometer-Centrifuge • Laser-Diffraction • FiberLab How to quantify progress Abb. 7

  8. w3 Cylinder height in ml 250 ml 120 ml 38 ml chemical pulp fines chemical pulp fines calcium carbonate + calcium carbonate Observing sedimentation of virgin components Abb. 8

  9. Slide 8 w3 Sedimentationsgeschwindigkeiten ausrechnen und dazuschreiben wimi, 11/18/2006

  10. coated paper fines uncoated paper fines mechanical pulp fines 80 % inorganic 50 % inorganic 0 % inorganic Sedimentation balance Abb. 9

  11. 5 Coated paper gestrichenes Papier Coated paper + GW gestrichenes Papier + Schliff 4.5 GW Schliff TMP 4 CaCO3 Rel. frequency in % 3.5 Volumen in % 3 2.5 2 1.5 1 0.5 0 0.1 1 10 100 1000 10000 Size of equivalent sphere in µm äquivalenter Kugeldurchmesser in micrometer Equivalent particle diameter in µm Particle size distributions measured with laser diffraction Abb. 10

  12. 1 0,9 0,8 Difference should be Mass distribution sum 0,7 Utilizable for 0,6 separation 0,5 0,4 CaCO3 + Fines I CaCO3 + Fines II 0,3 CaCO3 + Fines III 0,2 CaCO3 0,1 Chem. Pulp Fines 0 0,001 0,01 0,1 1 10 Sedimentation velocity in mm/s Measuring sedimentation of components with a sedimentation balance Abb. 11

  13. Sinkgeschwindigkeit, Papier ungestrichen, normiert auf g 1,0 0,9 0,8 Mass distribution sum 0,7 0,6 0,5 Ma% 50g manometer centrifuge Q3 1 Ma% 50 g 0,5 at x % consistency 2 Ma% 50 g 0,4 3 Ma% 50 g 0,3 sedimentation balance Sediwaage 3,7 Ma% at 3.7 % consistency 0,2 0,1 0,0 1,00E-07 1,00E-06 1,00E-05 1,00E-04 1,00E-03 1,00E-02 Sedimentation velocity in m/s Sinkgeschwindigkeit [m/s] Normalised on acceleration due to gravity g Uncoated paper fines’ settling velocities Abb. 12

  14. 1,0 0,9 0,8 Mass distribution sum 0,7 0,6 Q3 1 Ma% 50 g 0,5 manometer centrifuge 2 Ma% 50 g 0,4 at x % consistency 0,3 3 Ma% 50 g sedimentation balance 0,2 Sediwaage 3,7 Ma% at 3.7 % consistency 0,1 0,0 1,00E-07 1,00E-06 1,00E-05 1,00E-04 1,00E-03 1,00E-02 Sedimentation velocity in m/s Sinkgeschwindigkeit [m/s] Coated paper fines’ settling velocities Abb. 13

  15. 100 Mass distribution sum in % Sedimentation 90 balance 80 Sedigraph 70 60 50 40 30 20 10 0 0.1 1.0 10.0 100.0 Equivalent spheric diameter in µm Comparison of Sed. Balance and Sedigraph Abb. 14

  16. luminous sedimentation cell source observation window: • width: 30 mm • height: 20 mm camera PCO 4000 technical data camera: • resolution: 4008 x 2672 single picture → particle size • frame rate: 5 frames/s series of pictures → sedimentation velocity • illumination time: 5 µs – 5 days Image analysis for sedimentation evaluation Abb. 15

  17. Sequence Abb. 16

  18. Sedimentation test rig Abb. 17

  19. 60 model suspension (fitrate coated paper + filtrate groundwood) 50 + 20,1 % ash content in % 40 - 10,6 % 30 36,4% 25,8% 56,5% 20 10 0 model suspension sediment overflow Separation results Abb. 18

  20. filtrate flotation sludge untreated filtrate flotation sludge treated with ultrasonic 90 80 70 60 ash content in % 74,8 % 50 70,5 % 81,3 % 40 30 20 10 0 startsuspension sediment Latest Results with Mechnical Treatment Abb. 19

  21. Latest Results: Visual Impression Abb. 20

  22. • Sedimentation of fines in pulp suspensions is complex and measurement difficult • Combinations of measurement methods are necessary for evaluating all relevant effects • Most promising: combination of sedimentaion camera (organic particles) with sedimentation device (all particles) • Still open questions and unsolved problems remaining – disintegration and stabilisation seems to be essential Conclusions Abb. 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend