fermionic spinfoam models and tqfts
play

Fermionic spinfoam models and TQFTs Steven Kerr University of - PowerPoint PPT Presentation

Fermionic spinfoam models and TQFTs Steven Kerr University of Nottingham Quantum Gravity Sum over Histories Quantum Gravity Sum over Histories D g e iS Z = Quantum Gravity Sum over Histories D g e iS Z =


  1. Fermionic spinfoam models and TQFTs Steven Kerr University of Nottingham

  2. Quantum Gravity ◮ Sum over Histories

  3. Quantum Gravity ◮ Sum over Histories � D g e iS ” Z = “

  4. Quantum Gravity ◮ Sum over Histories � D g e iS ” Z = “ ◮ Fundamental length scale

  5. Quantum Gravity ◮ Sum over Histories � D g e iS ” Z = “ ◮ Fundamental length scale

  6. Problems ◮ Triangulation independence

  7. Problems ◮ Triangulation independence ◮ Absence of matter

  8. Problems ◮ Triangulation independence ◮ Absence of matter ◮ We take the point of view that matter and triangulation independence are crucial!

  9. Induced actions � ψ / D ψ D ψ e i � D ψ D = γ µ ( d µ − iA µ ) / Z =

  10. Induced actions � � ψ / D ψ D ψ e i D ψ D = γ µ ( d µ − iA µ ) / Z = D ) = e t r ln i / D = det( i /

  11. Induced actions � ψ / D ψ D ψ e i � D ψ D = γ µ ( d µ − iA µ ) / Z = D ) = e t r ln i / D = det( i / = e iS eff

  12. Induced actions � ψ / D ψ D ψ e i � D ψ D = γ µ ( d µ − iA µ ) / Z = D ) = e t r ln i / D = det( i / = e iS eff ◮ John Barret has suggested that the Standard Model can be induced in this way: arXiv:1101.6078v2 [hep-th]

  13. A one dimensional fermionic TQFT

  14. A one dimensional fermionic TQFT ψ ( t ) , ¯ ψ i , ¯ ψ ( t ) , t ∈ [0 , 2 π ] ψ i , i = 1 .. N

  15. A one dimensional fermionic TQFT ψ ( t ) , ¯ ψ i , ¯ ψ ( t ) , t ∈ [0 , 2 π ] ψ i , i = 1 .. N

  16. A one dimensional fermionic TQFT ψ ( t ) , ¯ ψ i , ¯ ψ ( t ) , t ∈ [0 , 2 π ] ψ i , i = 1 .. N Q i = P e i � Adt A ( t )

  17. A one dimensional fermionic TQFT N � � N i =1 ¯ ˆ � d ψ i d ¯ ψ i ( ψ i − Q i +1 ψ i +1 ) Z = ψ i e i =1 ψ N +1 = ψ 1 Q N +1 = Q 1

  18. A one dimensional fermionic TQFT N � � N i =1 ¯ ˆ d ψ i d ¯ � ψ i ( ψ i − Q i +1 ψ i +1 ) Z = ψ i e i =1 ψ N +1 = ψ 1 Q N +1 = Q 1 N � = det(1 − Q ) Q = Q i i =1

  19. A one dimensional fermionic TQFT N � � N i =1 ¯ ˆ � d ψ i d ¯ ψ i ( ψ i − Q i +1 ψ i +1 ) Z = ψ i e i =1 ψ N +1 = ψ 1 Q N +1 = Q 1 N � = det(1 − Q ) Q = Q i i =1 ◮ ˆ Z is triangulation independent - a topological invariant!

  20. Action What is the significance of this theory? It is a discretisation of a one dimensional Dirac theory, N ˆ � ¯ S = − i ψ i ( ψ i − Q i +1 ψ i +1 ) i =1 N � Q i +1 ψ i +1 − ψ i � ∆ t = 2 π � ¯ = i ∆ t ψ i ∆ t N i =1

  21. Action What is the significance of this theory? It is a discretisation of a one dimensional Dirac theory, N ˆ � ¯ S = − i ψ i ( ψ i − Q i +1 ψ i +1 ) i =1 N � Q i +1 ψ i +1 − ψ i � ∆ t = 2 π � ¯ = i ∆ t ψ i ∆ t N i =1 � Q i +1 ψ i +1 − ψ i � = / lim D t ψ ( t ) ∆ t → 0 i ∆ t � 2 π N � ∆ t → 0 ∆ t lim = dt 0 i =1 � ˆ dt ψ / lim S = D ψ ∆ t → 0

  22. Continuum theory One can calculate the partition function of the continuum theory exactly

  23. Continuum theory One can calculate the partition function of the continuum theory exactly � � dt ψ / D ψ D ψ e i D ψ Z =

  24. Continuum theory One can calculate the partition function of the continuum theory exactly � � dt ψ / D ψ D ψ e i D ψ Z = We find that ˆ Z = Z !

  25. Continuum theory One can calculate the partition function of the continuum theory exactly � � dt ψ / D ψ D ψ e i D ψ Z = We find that ˆ Z = Z ! Naturally, one would like to try do something similar in higher dimensions. This is the subject of current investigation.

  26. Thanks!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend