f gamma multi frequency radio monitoring of fermi blazars
play

F-GAMMA: multi-frequency radio monitoring of Fermi blazars E. - PowerPoint PPT Presentation

F-GAMMA: multi-frequency radio monitoring of Fermi blazars E. Angelakis, I. Myserlis, & J. A. Zensus Max-Planck-Institut fr Radioastronomie, Auf dem Huegel 69, Bonn 53121, Germany on behalf of the F-GAMMA team the F-GAMMA program (Jan 2007


  1. F-GAMMA: multi-frequency radio monitoring of Fermi blazars E. Angelakis, I. Myserlis, & J. A. Zensus Max-Planck-Institut für Radioastronomie, Auf dem Huegel 69, Bonn 53121, Germany on behalf of the F-GAMMA team

  2. the F-GAMMA program (Jan 2007 — Jan 2015): ➡ almost 90 mostly Fermi sources ➡ localise the gamma-ray emission site ➡ 2.64 - 142, 229, 345 GHz at 12 frequency steps ➡ understand the broad-band variability ➡ mean cadence 1.3 months ➡ estimate the properties of the emitting elements Fuhrmann, Angelakis et al., 2016, A&A, 596, A45

  3. gamma-ray emission site

  4. γ rays gamma rays production site? Relativistic jet Broad Line Region (BLR) γ -ray emission region <~ 1 pc Accretion disk ~ 1 – 10 pc Dust torus γ -ray emission region Relativistic jet Broad Line Region (BLR) <~ 1 pc Accretion disk ~ 1 – 10 pc Dust torus Karamanavis et al A&A 590, A48 (2016) Fuhrmann et al MNRAS 441, 1899 (2014)

  5. the exercise: ➡ ~ 3.5-year light curves of 54 Fermi blazars ➡ search for radio/ γ -ray correlations relative timing of flares results: ➡ 9 cases significant ➡ radio bands delay with respect to gamma rays significant correlation interpretation: ➡ Delay origin: opacity synchrotron self-absorption (SSA) dominated: - γ rays escape immediately while radio progressively later no significant correlation Fuhrmann et al MNRAS 441, 1899

  6. <latexit sha1_base64="cdZq7rg42XT2wFXWnE8iom4AzTI=">AC3icbVA9TwJBFNzDL8Qv1NJmIzGxInfGRO0INhYWSDwh4QjZWxbYsHe32X1nIBfsbfwrNhZqbP0Ddv4b9+AKBSfZDIzL/ve+FJwDb9beWldW1/LrhY3Nre2d4u7enY5iRZlLIxGpk80EzxkLnAQrCkVI4EvWMfXqZ+454pzaPwFsaStQPSD3mPUwJG6hRL9Y4XEBioIKle1ycekVJFI2yXnQcP2AgScmZftKfAicTJSQhlqneKX141oHLAQqCBatxbQjshCjgVbFLwYs0koUPSZy1DQxIw3U6mx0zwkVG6uBcp80LAU/X3REICrceBb5Lp4nreS8X/vFYMvfN2wkMZAwvp7KNeLDBEOG0Gd7liFMTYEIVN7tiOiCKUD9FUwJzvzJi8Q9KV+U7ZvTUqWatZFHB+gQHSMHnaEKukI15CKHtEzekVv1pP1Yr1bH7Nozspm9tEfWJ8/S2ybWQ=</latexit> <latexit sha1_base64="cdZq7rg42XT2wFXWnE8iom4AzTI=">AC3icbVA9TwJBFNzDL8Qv1NJmIzGxInfGRO0INhYWSDwh4QjZWxbYsHe32X1nIBfsbfwrNhZqbP0Ddv4b9+AKBSfZDIzL/ve+FJwDb9beWldW1/LrhY3Nre2d4u7enY5iRZlLIxGpk80EzxkLnAQrCkVI4EvWMfXqZ+454pzaPwFsaStQPSD3mPUwJG6hRL9Y4XEBioIKle1ycekVJFI2yXnQcP2AgScmZftKfAicTJSQhlqneKX141oHLAQqCBatxbQjshCjgVbFLwYs0koUPSZy1DQxIw3U6mx0zwkVG6uBcp80LAU/X3REICrceBb5Lp4nreS8X/vFYMvfN2wkMZAwvp7KNeLDBEOG0Gd7liFMTYEIVN7tiOiCKUD9FUwJzvzJi8Q9KV+U7ZvTUqWatZFHB+gQHSMHnaEKukI15CKHtEzekVv1pP1Yr1bH7Nozspm9tEfWJ8/S2ybWQ=</latexit> <latexit sha1_base64="cdZq7rg42XT2wFXWnE8iom4AzTI=">AC3icbVA9TwJBFNzDL8Qv1NJmIzGxInfGRO0INhYWSDwh4QjZWxbYsHe32X1nIBfsbfwrNhZqbP0Ddv4b9+AKBSfZDIzL/ve+FJwDb9beWldW1/LrhY3Nre2d4u7enY5iRZlLIxGpk80EzxkLnAQrCkVI4EvWMfXqZ+454pzaPwFsaStQPSD3mPUwJG6hRL9Y4XEBioIKle1ycekVJFI2yXnQcP2AgScmZftKfAicTJSQhlqneKX141oHLAQqCBatxbQjshCjgVbFLwYs0koUPSZy1DQxIw3U6mx0zwkVG6uBcp80LAU/X3REICrceBb5Lp4nreS8X/vFYMvfN2wkMZAwvp7KNeLDBEOG0Gd7liFMTYEIVN7tiOiCKUD9FUwJzvzJi8Q9KV+U7ZvTUqWatZFHB+gQHSMHnaEKukI15CKHtEzekVv1pP1Yr1bH7Nozspm9tEfWJ8/S2ybWQ=</latexit> “tau=1” surface for ν 4 > ν 3 > ν 2 > ν 1 need to solve: gamma-ray BH jet base emission site r BH , γ = r BH , base + r base , γ ν 4 ν 3 ν 2 ν 1 hence r base, γ is a lower limit for the distance r BH, γ r BH,base r base, γ r r , γ r base, ν : r base, ν 1. use VLBI-only core-shifts from gamma-radio (tedious, hard task etc) relative timing (DCCF) 2. radio-only time-lags with c β app τ source proper motion from VLBI ∆ r r γ = r γ sin θ � 1 100 � = � + �� for 3C454.3 Fuhrmann et al MNRAS 441, 1899, 2014 80 r BH , γ ≥ 0 . 8 − − 1 . 6 pc time lag [days] 60 R BLR ≈ 0 . 2 pc with Bonnoli et al. 2011 40 for PKS1502+106 Karamanavis et al A&A 590, A48, 2016 20 r BH , γ ≥ 1 . 9 ± 1 . 1 pc 0 0 100 200 300 50 150 250 350 frequency [GHz] R BLR ≈ 0 . 1 pc with Abdo et al. 2010

  7. physical processes at the emission elements

  8. the Radiopol since 2015 … ➡ almost 18 Fermi sources ➡ 2.64 - 43 GHz ➡ LP at 2.64, 4.85, 8.35, 10.45 and 14.6 GHz ➡ CP at 2.64, 4.85, 8.35, 10.45, 14.6, 23.05 GHz ➡ mean cadence 2 weeks Myserlis, Angelakis et al. 2016Galax…4…58M Angelakis, Myserlis & Zensus, Galaxies, doi: 10.20944/preprints201708.0108.v1

  9. the Radiopol since 2015 … ➡ almost 18 Fermi sources ➡ 2.64 - 43 GHz ➡ LP at 2.64, 4.85, 8.35, 10.45 and 14.6 GHz ➡ CP at 2.64 , 4.85, 8.35, 10.45, 14.6, 23.05 GHz ➡ mean cadence 2 weeks Myserlis, Angelakis et al. 2016Galax…4…58M Angelakis, Myserlis & Zensus, Galaxies, doi: 10.20944/preprints201708.0108.v1

  10. the Radiopol since 2015 … ➡ Uncertainties: - LP degree: 0.1 % - CP degree: 0.1—0.2 % - EVPA: 1° ➡ near future: 90 srcs, 5 LP and 6 CP over at least 8 + 2 +… years Myserlis, Angelakis et al. 2016Galax…4...58M Myserlis et al. 2017, A&A, arXiv: 170604200M

  11. 3C279 3C454.3 2006.7 2014.9 2006.7 2014.9 the picture: variability caused by episodic activity that undergo spectral evolution. We assume: ➡ magnetised jet with partially uniform magnetic field, ➡ occasional traveling disturbances, ➡ particles at the shocked areas radiate flaring emission which undergoes spectral evolution Angelakis, Myserlis & Zensus, 2017Galax…5...81A Myserlis et al. in prep.

  12. Slab jet shape B Cell B = B 0 (r/r 0 ) -q Line of sight n( γ )d( γ ) = n 0 γ -s d γ , γ > γ i Myserlis, Angelakis et al. 2016Galax...4...58M, ν based on Hughes et al. (1989)

  13. jet shape k compression factor Cell Density Line of sight 0 = n 0 k � s +3 n 0 6 Lower energy cutoff min = E min k � 1 E 0 3 B-field strength B 0 ∼ kB ν

  14. the high- γ min regime: ➡ each cell has a 100% uniform B-field parallel to the jet with 5% of the amplitude of the local field ➡ B 0 ~ 5 mG Shock parameters: ➡ Compression factor: k = 0.8 (mild shock) 4 ➡ γ min ~ 10 ➡ Doppler factor: D ~ 30 
 Consistent with D var at 37 GHz 
 Hovatta et al. (2009) Jet plasma parameters (un-shocked jet) -3 ➡ Density: n 0 = 10 - 100 cm ➡ Magnetic field coherence length: 9 pc Angelakis, Myserlis & Zensus, 2017Galax...5...81A Myserlis et al., Galaxies, vol. 4, issue 4, p. 58 Myserlis, Angelakis et al.,in prep.

  15. Observed lightcurves Synthetic lightcurves 8.35 GHz 8.35 GHz I (Jy) LP (%) χ (°) CP (%) MJD Myserlis, Angelakis et al.,in prep. Myserlis et al., Galaxies, vol. 4, issue 4, p. 58

  16. the low- γ min regime: NGC 4845 Irwin et al, 2015,ApJ…809..172I ➡ evolving convex radio spectrum with a peak around 3-5 GHz ➡ LP: practically zero (0.1–0.5 %) at both 1.5and 5 GHz ✘ ➡ CP: - unusually high at 1.5 GHz: 2–3 % ✔ - zero at 5 GHz ✔ we examined whether the high CP is caused by converting linear to circular polarisation 
 Realisation ➡ conical adiabatically expanding outflow ➡ random B-field ➡ γ min ∼ 10–100 
 We find: ➡ there is transformation of LP to CP at 1.5 GHz Faraday conversion, hence: - the low LP and high CP degrees 
 ➡ Low LP at 5 GHz cannot be reproduced with 
 this realisation. - an excess of low-energy magnetised plasma within or around the flow may be causing de-polarisation through Faraday rotation. 
 line of sight 17

  17. To summarise : ➡ vast dataset: 281 observing sessions , more than 40 proposals , more than 40 papers - cross correlation with gamma rays: location of the gamma-ray emission - internal shocks as the variability mechanism - mildly relativistic/powerful radio jet in Narrow Lines Seyfert 1 galaxies similar to bazars - Scale Invariant Jets: From Blazars to Microquasars - … etc

  18. To summarise : ➡ polarisation: 90 srcs, 5 LP and 6 CP over at least 8 + 2 +… years - 11300 data points with Full-Stokes (I, Q, U, V) ➡ Toy model: shock-driven variability and evolution works well both at: - high γ min regime - low γ min regime - and the reproduction of physical processes

  19. Thank you! Emmanouil Angelakis, Ioannis Myserlis & J. Anton Zensus Max-Planck-Institut für Radioastronomie, Auf dem Huegel 69, Bonn 53121, Germany

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend