extended conscriptions algebraically
play

Extended Conscriptions Algebraically Walter Guttmann University of - PowerPoint PPT Presentation

Extended Conscriptions Algebraically Walter Guttmann University of Canterbury 1. Assumptions 2. Conscriptions 3. Algebras Assumption Commitment ( y > 1) (while x > 1 do x := x / y ) assumption refers to pre-state only


  1. Extended Conscriptions Algebraically Walter Guttmann University of Canterbury 1. Assumptions 2. Conscriptions 3. Algebras

  2. Assumption ⊢ � Commitment ( y > 1) ⊢ � (while x > 1 do x := x / y ) assumption • refers to pre-state only • condition for successful execution • execution might abort or not terminate if assumption is false commitment • relates pre- and post-state • effect of successful execution Walter Guttmann · RAMiCS · 2014-04-28 2

  3. Relational model Q ⊢ � R state space A • Q , R : A ↔ A • Q = Q T operators • ( Q 1 ⊢ � R 1 ) + ( Q 2 ⊢ � R 2 ) = (( Q 1 ∩ Q 2 ) ⊢ � ( R 1 ∪ R 2 )) • ( Q 1 ⊢ � R 1 ) · ( Q 2 ⊢ � R 2 ) = (( Q 1 ∩ R 1 Q 2 ) ⊢ � ( R 1 R 2 )) � R ) ∗ = ( R ∗ Q ⊢ • ( Q ⊢ � R ∗ ) Walter Guttmann · RAMiCS · 2014-04-28 3

  4. Matrix model � T Q � O ( Q ⊢ � R ) = R Q R state space A • T , O , Q , R : A ↔ A • Q = Q T operators • +, · , ∗ standard matrix operators • Q = states from which execution might abort or not terminate • R = possible successors of each state Walter Guttmann · RAMiCS · 2014-04-28 4

  5. Further matrix models � T � T • total correctness Q ⊆ R Q = Q T Q R � T � O • general correctness Q = Q T Q R  T T T  P = P T P ⊆ Q • extended designs O T O   P ⊆ R Q = Q T P Q R   T O O P = P T O T O •   Q = Q T P Q R Walter Guttmann · RAMiCS · 2014-04-28 5

  6. Problems • generalise Q to arbitrary relation • determine properties of operators • find approximation order • unify with existing models Walter Guttmann · RAMiCS · 2014-04-28 6

  7. Conscriptions (Dunne 2013) � I � O Q R state space A • I , O , Q , R : A ↔ A • no restriction on Q Q relates pre- and post-state • final state of aborting executions • stable state of non-terminating executions • abstraction of more detailed models Walter Guttmann · RAMiCS · 2014-04-28 7

  8. Operators � I O � T T � I O � I O � � � I O � I O T O O T � � � I O I O O I � � I O O R � O O • R ⊆ I for tests • +, · standard matrix operators • refinement ≤ is componentwise ⊆ • approximation? Walter Guttmann · RAMiCS · 2014-04-28 8

  9. Non-terminating executions • all non-terminating executions L � I � O L = T O • n ( x ) = set of states from which x has non-terminating executions • n ( x ) ≤ 1 • Galois connection n ( x )L ≤ y ⇔ n ( x ) ≤ n ( y ) • gives � I � � � I O O n = Q R O Q T ∩ I Walter Guttmann · RAMiCS · 2014-04-28 9

  10. Axioms for n • bounded distributive lattice ( S , + , � , 0 , ⊤ ) • semiring ( S , + , · , 0 , 1) without x · 0 = 0 • n -algebra ( S , + , � , · , n , 0 , 1 , L , ⊤ ) n ( x ) + n ( y ) = n ( n ( x ) ⊤ + y ) n ( x ) ≤ n (L) � 1 n ( x ) n ( y ) = n ( n ( x ) y ) n ( x )L ≤ x n ( x ) n ( x + y ) = n ( x ) n (L) x ≤ x n (L) ⊤ n (L) x = ( x � L) + n (L0) x x n ( y ) ⊤ ≤ x 0 + n ( xy ) ⊤ x L = x 0 + n ( x L)L x ⊤ y � L ≤ x L y 1 • n ( S ) bounded distributive lattice • many instances of n -algebras S n (1) n ( S ) n (0) 0 Walter Guttmann · RAMiCS · 2014-04-28 10

  11. Recursion • least fixpoint in approximation order ⊑ x ⊑ y ⇔ x ≤ y + L ∧ n (L) y ≤ x + n ( x ) ⊤ • gives � I � I � � O O ⊑ ⇔ Q 2 ⊆ Q 1 ∧ R 1 ⊆ R 2 ⊆ R 1 ∪ Q 1 T Q 1 R 1 Q 2 R 2 • ⊑ partial order with least element L • +, · , � L are ⊑ -isotone Walter Guttmann · RAMiCS · 2014-04-28 11

  12. Recursion theorem • assume f is ≤ -, ⊑ -isotone and µ f , ν f exist • µ f / ν f / κ f is ≤ / ≥ / ⊑ -least fixpoint • ⊓ is ⊑ -meet • then equivalent • κ f exists • κ f and µ f ⊓ ν f exist and κ f = µ f ⊓ ν f • κ f exists and κ f = ( ν f � L) + µ f • n (L) ν f ≤ ( ν f � L) + µ f + n ( ν f ) ⊤ • n (L) ν f ≤ ( ν f � L) + µ f + n (( ν f � L) + µ f ) ⊤ • ( ν f � L) + µ f ⊑ ν f • µ f ⊓ ν f exists and µ f ⊓ ν f = ( ν f � L) + µ f • µ f ⊓ ν f exists and µ f ⊓ ν f ≤ ν f Walter Guttmann · RAMiCS · 2014-04-28 12

  13. Iteration theorem • while p do w = if p then ( w ; while p do w ) else skip • f ( x ) = yx + z κ f = ( y ω � L) + y ∗ z = n ( y ω )L + y ∗ z = y ⋆ z • omega algebra ( S , + , · , ∗ , ω , 0 , 1 , ⊤ ) without x · 0 = 0 • n -omega algebra ( S , + , � , · , n , ∗ , ω , 0 , 1 , L , ⊤ ) n (L) x ω ≤ x ∗ n ( x ω ) ⊤ x L ≤ x L x L • ∗ , ω are ⊑ -isotone Walter Guttmann · RAMiCS · 2014-04-28 13

  14. Strict models • n -algebras developed for non-strict computations • L x = L in strict models • κ f = y ◦ z • y ◦ = n ( y ω )L + y ∗ • sumstar, productstar, simulation properties ( x + y ) ◦ = ( x ◦ y ) ◦ x ◦ zx ≤ yy ◦ z + w ⇒ zx ◦ ≤ y ◦ ( z + wx ◦ ) ( xy ) ◦ = 1 + x ( yx ) ◦ y xz ≤ zy ◦ + w ⇒ x ◦ z ≤ ( z + x ◦ w ) y ◦ • models • Kleene algebra x ◦ = x ∗ • omega algebra x ◦ = x ω 0 + x ∗ • demonic refinement algebra x ◦ = x Ω Walter Guttmann · RAMiCS · 2014-04-28 14

  15. Extended conscriptions (Dunne 2013)   I O O O T O   P Q R • P = aborting executions • Q = states with non-terminating executions • no restriction on P • Q = Q T • obtain n , ⊑ , ⋆ , ◦ similarly Walter Guttmann · RAMiCS · 2014-04-28 15

  16. Further computation models   I O O O I O   P Q R • no restriction on P , Q • obtain n , ⊑ , ⋆ , ◦ similarly Walter Guttmann · RAMiCS · 2014-04-28 16

  17. Conclusion • theory developed in Isabelle/HOL • approximation for new models • derive n using Galois connection • show n -algebra axioms • use approximation in n -algebras • future work • non-strict computations with general correctness • multirelations with infinite, aborting executions Walter Guttmann · RAMiCS · 2014-04-28 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend