properties of some algebraically defined digraphs
play

PROPERTIES OF SOME ALGEBRAICALLY DEFINED DIGRAPHS Aleksandr Kodess, - PowerPoint PPT Presentation

PROPERTIES OF SOME ALGEBRAICALLY DEFINED DIGRAPHS Aleksandr Kodess, Felix Lazebnik Department of Mathematical Sciences University of Delaware Modern Trends of Algebraic Graph Theory Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs What is


  1. PROPERTIES OF SOME ALGEBRAICALLY DEFINED DIGRAPHS Aleksandr Kodess, Felix Lazebnik Department of Mathematical Sciences University of Delaware Modern Trends of Algebraic Graph Theory Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  2. What is a digraph? Definition v 1 v 5 A digraph is a pair D = ( V , A ) of: a set V , whose elements are called vertices or nodes v 2 v 4 a set A of ordered pairs of vertices, called arcs , directed edges , or arrows v 3 Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  3. What is an algebraic digraph D ( q ; f ) ? Let F q be a finite field with q elements; f : F 2 q → F q be a bivariate polynomial. Definition An algebraic digraph , denoted D ( q ; f ) , is a digraph whose vertex set is F 2 q � � arc set consits of ordered pairs ( x 1 , x 2 ) , ( y 1 , y 2 ) with the relation x 2 + y 2 = f ( x 1 , y 1 ) , Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  4. What is an algebraic digraph D ( q ; f ) ? Let F q be a finite field with q elements; f : F 2 q → F q be a bivariate polynomial. Definition An algebraic digraph , denoted D ( q ; f ) , is a digraph whose vertex set is F 2 q � � arc set consits of ordered pairs ( x 1 , x 2 ) , ( y 1 , y 2 ) with the relation x 2 + y 2 = f ( x 1 , y 1 ) , Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  5. What is an algebraic digraph D ( q ; f ) ? Let F q be a finite field with q elements; f : F 2 q → F q be a bivariate polynomial. Definition An algebraic digraph , denoted D ( q ; f ) , is a digraph whose vertex set is F 2 q � � arc set consits of ordered pairs ( x 1 , x 2 ) , ( y 1 , y 2 ) with the relation x 2 + y 2 = f ( x 1 , y 1 ) , Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  6. What is an algebraic digraph D ( q ; f ) ? Let F q be a finite field with q elements; f : F 2 q → F q be a bivariate polynomial. Definition An algebraic digraph , denoted D ( q ; f ) , is a digraph whose vertex set is F 2 q � � arc set consits of ordered pairs ( x 1 , x 2 ) , ( y 1 , y 2 ) with the relation x 2 + y 2 = f ( x 1 , y 1 ) , Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  7. What is an algebraic digraph D ( q ; f ) ? Let F q be a finite field with q elements; f : F 2 q → F q be a bivariate polynomial. Definition An algebraic digraph , denoted D ( q ; f ) , is a digraph whose vertex set is F 2 q � � arc set consits of ordered pairs ( x 1 , x 2 ) , ( y 1 , y 2 ) with the relation x 2 + y 2 = f ( x 1 , y 1 ) , Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  8. Example of D ( q ; f ) Example of D ( q ; f ) V ( D ) = F 2 q f : F 2 q → F q There is an arc from vertex ( x 1 , x 2 ) to vertex ( y 1 , y 2 ) if and only if x 2 + xy + y 2 + 1 x 2 + y 2 = = f 1 ( x 1 , y 1 ) x 2 + xy + y 2 x 2 + y 2 = = f 2 ( x 1 , y 1 ) x 2 + y 2 = xy = f 3 ( x 1 , y 1 ) Easy to argue that if q is odd, then D ( q ; f 1 ) ∼ = D ( q ; f 2 ) ∼ = D ( q ; f 3 ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  9. Example of D ( q ; f ) Example of D ( q ; f ) V ( D ) = F 2 q f : F 2 q → F q There is an arc from vertex ( x 1 , x 2 ) to vertex ( y 1 , y 2 ) if and only if x 2 + xy + y 2 + 1 x 2 + y 2 = = f 1 ( x 1 , y 1 ) x 2 + xy + y 2 x 2 + y 2 = = f 2 ( x 1 , y 1 ) x 2 + y 2 = xy = f 3 ( x 1 , y 1 ) Easy to argue that if q is odd, then D ( q ; f 1 ) ∼ = D ( q ; f 2 ) ∼ = D ( q ; f 3 ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  10. Example of D ( q ; f ) Example of D ( q ; f ) V ( D ) = F 2 q f : F 2 q → F q There is an arc from vertex ( x 1 , x 2 ) to vertex ( y 1 , y 2 ) if and only if x 2 + xy + y 2 + 1 x 2 + y 2 = = f 1 ( x 1 , y 1 ) x 2 + xy + y 2 x 2 + y 2 = = f 2 ( x 1 , y 1 ) x 2 + y 2 = xy = f 3 ( x 1 , y 1 ) Easy to argue that if q is odd, then D ( q ; f 1 ) ∼ = D ( q ; f 2 ) ∼ = D ( q ; f 3 ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  11. Example of D ( q ; f ) Example of D ( q ; f ) V ( D ) = F 2 q f : F 2 q → F q There is an arc from vertex ( x 1 , x 2 ) to vertex ( y 1 , y 2 ) if and only if x 2 + xy + y 2 + 1 x 2 + y 2 = = f 1 ( x 1 , y 1 ) x 2 + xy + y 2 x 2 + y 2 = = f 2 ( x 1 , y 1 ) x 2 + y 2 = xy = f 3 ( x 1 , y 1 ) Easy to argue that if q is odd, then D ( q ; f 1 ) ∼ = D ( q ; f 2 ) ∼ = D ( q ; f 3 ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  12. Simple Observation Simple isomorphisms Let q be an odd prime power, and f ∈ F q [ x , y ] . Let f 1 ( x , y ) = f ( x , y ) − f ( 0 , 0 ) , and f ∗ ( x , y ) = f 1 ( x , y ) − f ( x , 0 ) − f ( 0 , y ) . The following statements hold: D ( q ; f ) ∼ = D ( q ; f 1 ) . If, in addition, f is a symmetric polynomial, then D ( q ; f ) ∼ = D ( q ; f 1 ) ∼ = D ( q ; f ∗ ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  13. Simple Observation Simple isomorphisms Let q be an odd prime power, and f ∈ F q [ x , y ] . Let f 1 ( x , y ) = f ( x , y ) − f ( 0 , 0 ) , and f ∗ ( x , y ) = f 1 ( x , y ) − f ( x , 0 ) − f ( 0 , y ) . The following statements hold: D ( q ; f ) ∼ = D ( q ; f 1 ) . If, in addition, f is a symmetric polynomial, then D ( q ; f ) ∼ = D ( q ; f 1 ) ∼ = D ( q ; f ∗ ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  14. Simple Observation Simple isomorphisms Let q be an odd prime power, and f ∈ F q [ x , y ] . Let f 1 ( x , y ) = f ( x , y ) − f ( 0 , 0 ) , and f ∗ ( x , y ) = f 1 ( x , y ) − f ( x , 0 ) − f ( 0 , y ) . The following statements hold: D ( q ; f ) ∼ = D ( q ; f 1 ) . If, in addition, f is a symmetric polynomial, then D ( q ; f ) ∼ = D ( q ; f 1 ) ∼ = D ( q ; f ∗ ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  15. What is a monomial algebraic digraph? Definition A monomial algebraic digraph , denoted D ( q ; m , n ) , is an algebraic digraph in which vertex set V is F 2 q there is an arc from ( x 1 , x 2 ) to ( y 1 , y 2 ) if and only if x 2 + y 2 = x m 1 y n 1 . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  16. D ( 3 ; 1 , 2 ) � 2,1 � � 0,2 � � 1,1 � � 1,0 � � 0,0 � � 2,2 � � 2,0 � � 0,1 � � 1,2 � Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  17. Motivation Work of: Lazebnik, Woldar (2001) Lazebnik, Ustimenko (1993, 1995, 1996) Viglione (2001) Dmytrenko, Lazebnik, Viglione (2005) Bipartite undirected graph B Γ n V ( B Γ n ) = P n ∪ L n , both P n and L n are copies of F n q point ( p ) = ( p 1 , . . . , p n ) is adjacent to line [ l ] = ( l 1 , . . . , l n ) if l 2 + p 2 = f 2 ( p 1 , l 1 ) l 3 + p 3 = f 3 ( p 1 , l 1 , p 2 , l 2 ) . . . l n + p n = f n ( p 1 , l 1 , p 2 , l 2 , . . . , p n − 1 , l n − 1 ) . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  18. Properties of B Γ n B Γ n admits neighbor-complete coloring , i.e. every color is uniquely represented among the neighbors of each vertex covering properties of B Γ n . For instance, B Γ n covers B Γ k for n > k . embedded spectra properties. For instance, spec ( B Γ k ) ⊆ spec ( B Γ n ) for k < n . edge-decompostiion properties. We have B Γ n decomposing K q n , q n . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  19. Properties of B Γ n B Γ n admits neighbor-complete coloring , i.e. every color is uniquely represented among the neighbors of each vertex covering properties of B Γ n . For instance, B Γ n covers B Γ k for n > k . embedded spectra properties. For instance, spec ( B Γ k ) ⊆ spec ( B Γ n ) for k < n . edge-decompostiion properties. We have B Γ n decomposing K q n , q n . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  20. Properties of B Γ n B Γ n admits neighbor-complete coloring , i.e. every color is uniquely represented among the neighbors of each vertex covering properties of B Γ n . For instance, B Γ n covers B Γ k for n > k . embedded spectra properties. For instance, spec ( B Γ k ) ⊆ spec ( B Γ n ) for k < n . edge-decompostiion properties. We have B Γ n decomposing K q n , q n . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  21. Properties of B Γ n B Γ n admits neighbor-complete coloring , i.e. every color is uniquely represented among the neighbors of each vertex covering properties of B Γ n . For instance, B Γ n covers B Γ k for n > k . embedded spectra properties. For instance, spec ( B Γ k ) ⊆ spec ( B Γ n ) for k < n . edge-decompostiion properties. We have B Γ n decomposing K q n , q n . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

  22. An application of B Γ n with a certain specialization Let C n denote the cycle of length n ≥ 3 ex ( v , { C 3 , C 4 , . . . , C 2 k } ) denote the greatest number of edges in a graph or order v which contains no subgraphs isomorphic to any C 3 , . . . , C 2 k . Theorem (Lazebnik, Ustimenko, Woldar 1995) 2 ex ( v , { C 3 , C 4 , . . . , C 2 k } ) ≥ c k v 1 + 3 k − 3 + ǫ , where c k is a positive function if k, and ǫ = 0 if k � = 5 is odd, and ǫ = 1 if k is even. This lower bounds comes from B Γ n with a certain choice of defining functions f i , 2 ≤ i ≤ n . Aleksandr Kodess, Felix Lazebnik Algebraic Digraphs

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend