exponential loading
play

Exponential Loading W(t)=W e e e t W e = 1625 kg/d e = 0.04558 - PDF document

CEE 577 Lecture #6 9/25/2017 Updated: 25 September 2017 Print version Lecture #6 (particular solutions, cont.) Chapra L4 (cont.) David A. Reckhow CEE 577 #6 1 Exponential Loading W(t)=W e e e t W e = 1625 kg/d e =


  1. CEE 577 Lecture #6 9/25/2017 Updated: 25 September 2017 Print version Lecture #6 (particular solutions, cont.) Chapra L4 (cont.) David A. Reckhow CEE 577 #6 1 Exponential Loading  W(t)=W e e  e t  W e = 1625 kg/d   e = 0.04558 /yr 3 W      ( t t ) e c e e e Concentration (mg/L)    p ( ) V 2.5 e 1200000 2 1000000 Loading (Kg/y) 800000 1.5 600000 1 Expon 400000 200000 0.5 0 -2 0 2 4 6 8 10 12 0 Time (years) 0 5 10 15 20 25 Time (years) David A. Reckhow CEE 577 #6 2 1

  2. CEE 577 Lecture #6 9/25/2017  W(t)=W ‐ bar+ W a sin(  t ‐  ) Sinusoidal Loading  W ‐ bar= 500,000 kg/yr  W a = 250,000 kg/yr T p   T p = 2  = 1 yr  phase shift,  = (0.25)2  =0.5  1000000 900000 800000 Loading (Kg/y) 700000 W a 600000 500000 400000 300000 W-bar 200000 100000 0 -1 -0.5 0 0.5 1 1.5 2 Time (years) David A. Reckhow CEE 577 #6 3 W-bar= 500,000 kg/yr W a = 250,000 kg/yr Sinusoidal Loading T p = 2  = 1 year phase shift ,  = 0.5     Response 1.2    ( ) arctan      phase shift Concentration (mg/L) 1 0.8 0.6 W W              ( 1 t ) sin ( ) a c e t p     2 2 0.4 V V W   0.2         sin ( ) exp( ) a t  2   2 V 0 0 5 10 15 20 25 1200000 1000000 Loading (Kg/y) Time (years) 800000 600000 Sinusoid 400000 Return 200000 0 -2 0 2 4 6 8 10 12 Time (years) David A. Reckhow CEE 577 #6 4 2

  3. CEE 577 Lecture #6 9/25/2017 Q=2x10 5 m 3 /d A=1.1x10 8 m 2 V=1.75x10 9 3 Sinusoidal Loading k  0   0 042 . Increasing  k  0 0003 .   015 . k  0 001 .   0 42 . k  0 005 .   187 . David A. Reckhow CEE 577 #6 5 Example (similar to: 11.1 from Reckhow & Chapra)  Green Lake & Happy Valley  Hydraulic Parameters  Q=20x10 6 m 3 /yr, V=100x10 6 m 2 , A s =10x10 6 m 2 , H=10m  Decay: k=1.05/yr  Loading  local WWTP: 0.115x10 4 g/capita/yr, 20,000 people (long term, but at t=0, WW is pumped to regional plant)  new paper mill: 50x10 6 g/yr  new cattle feed lot: 150 animals, increasing by 100 cattle each year, 0.1x10 6 g/animal  New scenario: regional WWTP cannot accept new WW, town of Happy Valley is growing exponentially at 0.3/yr  New canning plant: annual cycle, avg=30x10 6 g/yr  max on Oct 1; min on Apr 1 (half of average) David A. Reckhow CEE 577 #6 6 3

  4. CEE 577 Lecture #6 9/25/2017 Summation of Loading Summation 4 Concentration (mg/L) 3.5 Cattle Feed Lot 3 2.5 WWTP 2 1.5 Canning plant 1 0.5 Paper Mill 0 Decay of C o 0 5 10 15 20 25 Time (years) David A. Reckhow CEE 577 #6 7 WWTP: dirunal variations  Figures 1.6 a & b, from Thomann & Mueller David A. Reckhow CEE 577 #6 8 4

  5. CEE 577 Lecture #6 9/25/2017 WWTP: weekly variations  Figure 1.6 c, from Thomann & Mueller David A. Reckhow CEE 577 #6 9 WWTP: Seasonal Variations  Figure 1.6 d, from Thomann & Mueller David A. Reckhow CEE 577 #6 10 5

  6. CEE 577 Lecture #6 9/25/2017 Next: Cultural Eutrophication  Many correlated WQ problems  Floating mats of algae  Low DO  High P? David A. Reckhow CEE 577 #6 11  To next lecture David A. Reckhow CEE 577 #6 12 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend