experiments with ultracold
play

Experiments with ultracold, disordered atomic bosons Giovanni - PowerPoint PPT Presentation

Experiments with ultracold, disordered atomic bosons Giovanni Modugno LENS and Dipartimento di Fisica e Astronomia, Universit di Firenze EXS2014, ICTP, Trieste Disordered bosons: an open problem disorder many-body localization? insulator


  1. Experiments with ultracold, disordered atomic bosons Giovanni Modugno LENS and Dipartimento di Fisica e Astronomia, Università di Firenze EXS2014, ICTP, Trieste

  2. Disordered bosons: an open problem disorder many-body localization? insulator (Bose glass) insulator (Anderson) BEC normal interaction BEC normal temperature only partially understood in theory; very few experiments

  3. Interacting bosons in 1D, at T  0 disorder insulator (Bose glass) insulator (Anderson) BEC normal interaction BEC normal temperature

  4. Interacting bosons in 1D, at T  0 disorder insulator insulator in 1D (Bose glass) (Bose glass) insulator (Anderson) quasi-BEC BEC normal interaction BEC One dimension. Main results from theory: • Anderson localization depends only weakly on energy normal temperature • Bose-Einstein condensation is marginal • a small E int competes with disorder and tends to restore superfluidity • for E int /E kin >1 the bosons progressively behave like non-interacting fermions and get again localized

  5. Disordered bosons at T=0 continuum lattice Giamarchi & Schulz , PRB 37 325 (1988), … Fisher et al PRB 40, 546 (1989), Rapsch, et al., EPL 46 559 (1999 ), … In a lattice: non-trivial competition between Bose glass, Mott insulator and superfluid, depending on the site occupation n

  6. Disordered, interacting bosons: experiments Quantum magnets : thermodynamical systems tuning of disorder and interactions is hard Cold atoms : Yu et al., Nature 489 (2012) tuning of disorder and interactions is possible inhomogeneous, temperature control is hard Deissler et al., Nat. Phys. 6 (2010) Pasienski et al., Nat. Phys. 6 (2010); Fallani et al., PRL 98 (2007) Gadway et al., PRL 107 (2011)

  7. The quasi-periodic lattice k   2 mod 1 k 1 J ~2 D     U      ˆ ˆ ˆ      D      ˆ ˆ ˆ . . cos 2 1 H J b b h c i n n n  1 i i i i i 2 i i i Aubry-Andrè model with metal-insulator transition at D =2 J Exponentially localized states with uniform x LOC   2 2    4 Interaction tuned via a Feshbach resonance U a dx m ( 39 K atoms) S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980). Theory by M. Modugno, A. Minguzzi, ...

  8. One-dimensional lattices harmonic trap Quasi-1D: the radial trapping energy much larger than the other energy scales Longitudinal trapping: inhomogeneity

  9. Coherence from momentum distribution FT          2 ( ) ( ) ( ) | ( ) | g x d x x x x k Spatially averaged TOF Momentum distribution correlation function   x ( ) exp( / ) g x x G » 1/ x

  10. Coherence from momentum distribution G (units of  /d ) D / J 1 10 U / J D’Errico, Lucioni et al., Phys. Rev. Lett. 113, 095301 (2014) The small-U line is from P. Lugan, et al., Phys. Rev. Lett. 98, 170403 (2007), ...

  11. Transport: mobility measurements free expansion shift, wait 0.8ms prepare in equilibrium  ideal fluid D / J U / J Incoherent regimes are also insulating

  12. Excitation spectra main lattice modulation “energy” measurement prepare in equilibrium (15%, 200ms) D / J U / J D U Ströferle et al., Phys. Rev. Lett. 92, 130403 (2004), Iucci et al. Phys.Rev. A 73, 041608 (2006); Fallani et al., PRL 98, 130404 (2007).

  13. Excitation spectra vs non-interacting fermions ___ excitation spectrum of non-interacting fermions Density by DMRG (correlation function of the hopping operator) D =0 D =6.3J D =9.5J D =6.3J G. Orso et al., Phys. Rev. A 80 033625 (2009) Theory by T. Giamarchi G. Pupillo et al, New. J. Phys. 8, 161 (2006). (Geneva), G. Roux (Orsay)

  14. Γ Δ π Γ Δ Finite-T effects and comparison with theory π beyond Luttinger: fitted thermal length 1 / 2 x T = d /arcsinh ( / ) k B T Jn 25 7 Phenomenological broadening of TT 20 6 T exp = 3-6 J P ( k ) with exponential decay of the ξ T (units of d) 5 15 correlations Δ /J 4  x  ( / ) x 10 ( ) g x e T T 3 5 2 0 1 10 U/J DMRG, T=0 Exp.

  15. Finite-T effects: large U Exact diagonalization for large U MI BG Thermal broadening appears only above a sizable crossover temperature. The strongly-correlated Bose glass survives at the experimental temperatures (an effect of the “Fermi energy” of fermionized bosons).

  16. Finite-T effects: small U We have evidence of a large thermal broadening, but… k B T=3.1(4)J k B T=4.5(7)J ... the mobility does not show a relevant change with temperature. Relation with many-body localization? (Aleiner, Altshuler, Shlyapnikov, Nature Physics 6, 900 (2010); Michal, Altshuler, Shlyapnikov, arXiv.1402.4796.)

  17. Transport revisited: clean system shift, wait a variable t free expansion prepare in equilibrium 0.5 Experiment no damping 0.4 low damping p 0 ( h /  1 ) high damping p C 0.3 Unstable regime 0.2 (interaction-enhanced dynamical instability) 0.1 Quantum phase slips 0.0 0 1 2 3 4 t (ms) L.Tanzi, et al. Phys. Rev. Lett. 111, 115301 (2013)

  18. Transport revisited: disordered system D = 0 0.3 D = 3.6 J D = 10 J SF IN 0.2 p 0 ( h /  1 ) 0.1 0.0 0 1 2 3 t (ms) The critical momentum is reduced by disorder As p c  0 : the SF to IN crossover from a generalized Laundau criterion

  19. Fluid-insulator crossover from transport G (units of  /d ) T=0 theory:  D   ( 2 ) / ( / ) J A nU J c A = 1.3  0.4  = 0.83  0.22 First steps towards a quantitative analysis of Bose glass and many-body localization physics in 1D Theory: P. Lugan, et al., Phys. Rev. Lett. 98, 170403 (2007), L. Fontanesi, et al., Phys. Rev. A 81, 053603 (2010), Altman et al. , ....

  20. Non interacting particles in 3D disorder disorder insulator in 1D insulator (Bose glass) (Bose glass) insulator (Anderson) quasi-BEC BEC normal interaction BEC normal temperature energy There is a critical energy for localization (Anderson transition): P. W. Anderson, Phys. Rev. 109, 1492 (1958) , ... Not yet measured in experiments!

  21. Simple picture of the mobility edge Localization length Diffusion coefficient x LOC   D m E c Energy    x       | | E E | | 1 . 6 D E E Critical behavior: LOC c c  D E Critical energy: c 50 years of theory of Anderson localization! e.g. E. Abrahams ed. World Scientific 2013

  22. Experiments on Anderson localization in 3D Light waves : Sperling, et al. Nat. Photonics (2012), Wiersma et al, .... Sound waves : Hu et al, Nat. Physics 4, 945 (2008). Atomic kicked rotor : a momentum space version of the Anderson model Chabé et al. Phys. Rev. Lett. 101, 255702 (2008), ... Ultracold atoms : Interacting BEC Non-interacting fermions E E E c E c n(E) n(E) Kondov et al, Science 334,63 (2011) F. Jendrzejewski et al, Nat. Physics 8, 398 (2012)

  23. 3D speckles disorder Same coherent speckles as in Palaiseau z y x E R D s R but 39 K atoms with tunable interaction E R ≤  2 /m s R 2  70nK Semeghini, Landini et al., arXiv:1404.3528

  24. Quasi-adiabatic preparation t= 0.2 s t= 0.1-5s trap interactions imaging speckles time Optimized by minimizing the kinetic energy

  25. Time evolution of the spatial distribution 2 x  300 m m

  26. From diffusion to localization D

  27. Momentum distribution kinetic energy  10 nK much smaller than D =47 nK The momentum and energy distributions are related by the spectral function  ( , ) : probability of having a momentum k at an energy E E k

  28. Energy distribution from momentum distribution      ( ) exp( / ) ( ) ( , ) ( ) f E E E n k E k f E dE m     ( ) ( , ) ( ) ( ) ( ) n E E k f E dk g E f E

  29. Excitation spectroscopy trap + A=20% interaction D  D   ( , ) ( )( 1 cos( )) t A t r r speckles time    D 2      ( ) ( ) ( ) ( ) P f E f i E E In the linear regime: r i f i , i f   n(E) E c E

  30. Excitation spectroscopy trap + A=20% interaction D  D   ( , ) ( )( 1 cos( )) t A t r r speckles time 1.00 N / N( ℏ  =0) 0.75 0.50 0.25 0.00 0 20 40 60 80 100 ℏ   k B (nK)

  31. Excitation spectroscopy 16 Fitting model for the mobility edge: E c 14 ℏ   12 E     10 c ( ) ' ( , ) N n E dE 0 8 n (E) 6        ' ( , ) ( 1 ) ( ) ( ) n E p n E pn E 4 2 0 10 20 30 40 50 60 70 80 90 100 p and E c are fitting parameters E / k B (nK)

  32. Excitation spectroscopy D = 47nK 1.00 N / N( ℏ  =0) 0.75 0.50 0.25 p  0.5 E c = 53(6) nK 0.00 0 20 40 60 80 100 ℏ   k B (nK)

  33. The mobility edge 100 E = D diffusive 80 E = E R E / k B (nK) 60 localized 40 20 0 0 20 40 60 80 100 D / k B (nK)

  34. Outlook disorder insulator in 1D insulator (Bose glass) (Bose glass) insulator (Anderson) quasi-BEC BEC normal interaction BEC normal temperature Open questions : • Anderson localization with interactions: many-body localization? • the Bose glass at finite temperature (without Mott physics) • BEC in disorder

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend