evaluation of doppler ultrasound for renal transplant
play

Evaluation of Doppler ultrasound for renal transplant evaluation for - PowerPoint PPT Presentation

Evaluation of Doppler ultrasound for renal transplant evaluation for renal transplant evaluation ARRS meeting 2011 05 03 F Edward Boas, Terry Desser and Aya Kamaya Terry Desser, and Aya Kamaya Stanford Hospital Disclosure of commercial


  1. Evaluation of Doppler ultrasound for renal transplant evaluation for renal transplant evaluation ARRS meeting 2011 ‐ 05 ‐ 03 F Edward Boas, Terry Desser and Aya Kamaya Terry Desser, and Aya Kamaya Stanford Hospital

  2. Disclosure of commercial interest Disclosure of commercial interest Neither I nor my immediate family members Neither I nor my immediate family members have a financial relationship with a commercial organization that may have a commercial organization that may have a direct or indirect interest in the content.

  3. Diagnoses Diagnoses Diagnosis Number of patients 1. Normal, with creatinine ≤ 1.5 7 2. Delayed graft function post ‐ operatively 6 3 Acute rejection 3. Acute rejection 8 8 4. Chronic rejection, transplant 5 glomerulopathy, or drug toxicity, creatinine > 1.5 i i 1 5 5. Hydronephrosis 5 6. Renal vein thrombosis 2 7. Other 14 Total 47

  4. Resistive index = ( V Resistive index ( V max V min )/ V max – V i )/ V y ow velocit Fl V V max V V min i Time

  5. Resistive index Resistive index Sensitivity 38% for acute rejection Specificity 63% 40% Normal (0.71 ± 0.11) 35% Acute rejection (0.77 ± 0.11) Other 30% 30% 25% 20% Acute rejection 15% Delayed graft function 10% Renal vein thrombosis 5% 0% <0.7 <0.7 0.70 – 0.79 0.70 0.79 0.80 0.89 0.80 – 0.89 0.90 0.99 0.90 – 0.99 ≥ 1 ≥ 1 Resistive index

  6. Mid renal artery velocity waveform Mid renal artery velocity waveform

  7. Velocity waveforms Velocity waveforms 30 — Normal 25 w (ml/s) — Acute rejection 20 artery flow 15 15 10 5 Renal 0 0 0.2 0.4 0.6 0.8 1 ‐ 5 ‐ 10 10 Fraction of cardiac cycle

  8. Velocity waveforms Velocity waveforms 30 — Normal 25 w (ml/s) — Acute rejection 20 — Delayed graft function — Chronic rejection Chronic rejection artery flow 15 15 — Hydronephrosis 10 — Renal vein thrombosis — Other 5 Renal 0 0 0.2 0.4 0.6 0.8 1 ‐ 5 ‐ 10 10 Fraction of cardiac cycle

  9. Velocity waveforms (average) Velocity waveforms (average) 20 15 Normal ml/s) tery flow (m 10 Acute rejection 5 in renal art 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Mai ‐ 5 Renal vein thrombosis ‐ 10 Fraction of cardiac cycle

  10. Velocity waveforms (Average ± stdev) Velocity waveforms (Average ± stdev) 20 Thick lines: average Thick lines: average Thin lines: one standard deviation 15 Normal ml/s) tery flow (m 10 Acute rejection 5 in renal art 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Mai ‐ 5 Renal vein thrombosis ‐ 10 Fraction of cardiac cycle

  11. Windkessel model Windkessel model Systole l Pulsatile pump Continuous capillary flow Image credits: Piotr Micha ł Jaworski (kidney) and User ZooFari on Wikipedia (heart). Creative Commons Attribution ‐ Share Alike 3.0 Unported license.

  12. Windkessel model Windkessel model Systole l Pulsatile pump Continuous capillary flow Image credits: Piotr Micha ł Jaworski (kidney) and User ZooFari on Wikipedia (heart). Creative Commons Attribution ‐ Share Alike 3.0 Unported license.

  13. Windkessel model Windkessel model Systole l Pulsatile pump Continuous capillary flow Image credits: Piotr Micha ł Jaworski (kidney) and User ZooFari on Wikipedia (heart). Creative Commons Attribution ‐ Share Alike 3.0 Unported license.

  14. Windkessel model Windkessel model Diastole l Pulsatile pump Continuous capillary flow Image credits: Piotr Micha ł Jaworski (kidney) and User ZooFari on Wikipedia (heart). Creative Commons Attribution ‐ Share Alike 3.0 Unported license.

  15. Windkessel model Windkessel model Diastole l Pulsatile pump Continuous capillary flow Image credits: Piotr Micha ł Jaworski (kidney) and User ZooFari on Wikipedia (heart). Creative Commons Attribution ‐ Share Alike 3.0 Unported license.

  16. Windkessel model Windkessel model Diastole l Pulsatile pump Continuous capillary flow Image credits: Piotr Micha ł Jaworski (kidney) and User ZooFari on Wikipedia (heart). Creative Commons Attribution ‐ Share Alike 3.0 Unported license.

  17. 3 ‐ element Windkessel model 3 element Windkessel model R 1 Pre ‐ glomerular resistance (renal artery) C Vascular compliance R 2 Post ‐ glomerular resistance (renal vein)

  18. 3 ‐ element Windkessel model 3 element Windkessel model

  19. Normal Normal

  20. High R 1 High R 1

  21. Normal Normal

  22. High R 2 High R 2

  23. Normal Normal

  24. Low C Low C

  25. 3 ‐ element Windkessel model 250 7 6 200 5 150 4 R 2 2 C C 3 100 2 50 1 0 0 0 10 20 30 0 10 20 30 R 1 R 1 7 � Normal 6 � Acute rejection 5 � Delayed graft function 4 � Chronic rejection � Chronic rejection C � Hydronephrosis 3 � Renal vein thrombosis 2 � Other 1 0 0 50 100 150 200 250 R 2

  26. 3 ‐ element Windkessel model 250 7 6 200 5 Renal vein thrombosis 150 4 R 2 2 C C 3 100 2 50 1 0 0 0 10 20 30 0 10 20 30 R 1 R 1 7 � Normal 6 � Acute rejection 5 � Delayed graft function 4 � Chronic rejection � Chronic rejection C � Hydronephrosis 3 � Renal vein thrombosis 2 � Other 1 0 0 50 100 150 200 250 R 2

  27. Doppler ultrasound Doppler ultrasound Acute rejection can’t be diagnosed using: Acute rejection can t be diagnosed using: • resistive index (intra ‐ renal) • pre ‐ glomerular resistance l l i • post ‐ glomerular resistance • vascular compliance • the shape of the velocity waveform (mid renal the shape of the velocity waveform (mid renal artery)

  28. Conclusions Conclusions • Doppler ultrasound of kidney transplants has Doppler ultrasound of kidney transplants has limited value in diagnosing acute rejection. • Resistive index > 0 9 is seen in acute rejection • Resistive index > 0.9 is seen in acute rejection, delayed graft function, and renal vein thrombosis. thrombosis • The 3 ‐ element Windkessel model can be used to determine vascular resistance and d i l i d compliance.

  29. Additional slides Additional slides

  30. 3 ‐ element Windkessel model 3 element Windkessel model Resistive index is increased with: Resistive index is increased with: • Increased R 2 (post ‐ glomerular resistance) • Decreased R 1 (pre ‐ glomerular resistance) d ( l l i ) • Increased C (vascular compliance) • Increased pulse pressure • Increased heart rate Increased heart rate

  31. Principal component analysis Principal component analysis Average waveform Average waveform Principal components Principal components 12 0.25 Flow 0.2 Biphasic pulsatility 10 Triphasic pulsatility 0.15 w (ml/s) ml/s) 0.1 8 0.05 Flow (m 6 6 Flow 0 0 0.2 0.4 0.6 0.8 1 ‐ 0.05 4 ‐ 0.1 2 ‐ 0.15 ‐ 0.2 0 0 0.2 0.4 0.6 0.8 1 ‐ 0.25 Fraction of cardiac cycle Fraction of cardiac cycle

  32. Principal component analysis 70 20 60 15 ulsatility lsatility 50 10 40 5 30 0 riphasic pu Biphasic pu ‐ 50 0 50 100 20 ‐ 5 10 ‐ 10 0 ‐ 15 ‐ 50 0 50 100 ‐ 10 ‐ 20 Tr B ‐ 20 ‐ 25 ‐ 30 ‐ 30 Flow Flow 20 20 � Normal 15 ulsatility � Acute rejection 10 � Delayed graft function 5 0 � Chronic rejection � Chronic rejection Triphasic pu ‐ 50 0 50 100 ‐ 5 � Hydronephrosis ‐ 10 � Renal vein thrombosis ‐ 15 � Other ‐ 20 ‐ 25 25 T ‐ 30 Biphasic pulsatility

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend