estimation equations for multivariate linear models with
play

Estimation equations for multivariate linear models with Kronecker - PowerPoint PPT Presentation

Estimation equations for multivariate linear models with Kronecker structured covariance matrices nska- Alvarez a , Chengcheng Hao b , Szczepa Yuli Liang c , Dietrich von Rosen d , e a Department of Mathematical and Statistical Methods,


  1. Estimation equations for multivariate linear models with Kronecker structured covariance matrices nska-´ Alvarez a , Chengcheng Hao b , Szczepa´ Yuli Liang c , Dietrich von Rosen d , e a Department of Mathematical and Statistical Methods, Pozna´ n University of Life Sciences, Poland, b School of Business Information, Shanghai University of International Business and Economics, China, c Statistics Sweden, Sweden, d Department of Energy and Technology, Swedish University of Agricultural Sciences, Sweden, e Department of Mathemathics, Link¨ oping University, Sweden 2.12.2016

  2. Model Consider independent and identically matrix normally distributed observations X i ∼ N p , q ( µ , Ψ , Σ ) , i = 1 , ..., n , vec X i ∼ N pq ( vec µ , Σ ⊗ Ψ ), where E [ X i ] = µ - the expected value, D [ X i ] = Σ ⊗ Ψ - the dispersion matrix, Ψ - the p × p matrix describing the unknown covariance structure between the rows of X i , Σ - the q × q matrix describing the unknown covariance structure between the columns of X i

  3. Data Y Let � n Y ( i ) = X i − 1 X i , n i =1 Moreover, � Y 1 i � Y = ( Y (1) , Y (2) , ..., Y ( n ) ) , Y ( i ) = , Y 2 i Y : p × nq , Y ( i ) : p × q , Y 1 i : r × q , Y 2 i : ( p − r ) × q , i = 1 , 2 , ..., n , so � Y 11 � � Y 1 � Y 12 ... Y 1 n Y = = , Y 21 Y 22 ... Y 2 n Y 2 where Y 1 : r × nq , Y 2 : ( p − r ) × nq .

  4. Data ˜ Y ′ Let � ˜ � Y ′ 1 i Y ′ = ( ˜ ˜ (1) , ˜ (2) , ..., ˜ ˜ Y ′ Y ′ Y ′ Y ′ ( n ) ) , ( i ) = ˜ Y ′ 2 i � ˜ � � Y ′ � Y ′ Y ′ Y ′ 1 ... Y ′ = ˜ 11 12 1 n = ˜ Y ′ Y ′ Y ′ ... Y ′ 2 21 22 2 n where Y ′ : q × np , ˜ ˜ Y ′ 1 i : q × r , ˜ Y ′ 2 i : q × ( p − r ), i = 1 , 2 , ..., n .

  5. Case 1 The matrix Σ is unstructured and Ψ is a partitioned matrix of the form � A ( θ ) � B Ψ = , B ′ Ω where A ( θ ): r × r , 1 < r < p , depends on an unknown parameter θ , B : r × ( p − r ) , Ω : ( p − r ) × ( p − r ) - unknown matrices.

  6. Case 1 - Theorem 1 Given that the maximum likelihood estimator for θ in A ( θ ) can be obtained the maximum likelihood estimators of µ , Σ and Ψ satisfy the following equations: n � 1 µ � = X i , n i =1 d A ( � θ ) − 1 vec ( qn A ( � θ ) − Y 1 ( I n ⊗ � Σ − 1 ) Y ′ 1 ) = 0 , d � θ − 1 ′ ′ ′ np � � 1 ( I n ⊗ A ( � θ ) − 1 ) � Y 1 + ( � 2 − � 1 ( I n ⊗ � δ ))( I n ⊗ � Σ = Y Y Y Ψ 2 • 1 ) ′ ′ × ( � 2 − � 1 ( I n ⊗ � δ )) ′ , Y Y − 1 ) Y ′ − 1 ) Y ′ � ( Y 1 ( I n ⊗ � 1 ) − 1 Y 2 ( I n ⊗ � = δ Σ Σ 1 ,

  7. Case 1 - Theorem 1 where � � A ( � � θ ) B � = Ψ , ′ � � B Ω and ′ A ( � � A ( � θ ) � � Ψ 2 • 1 + � � θ ) � B = δ , Ω = δ δ , − 1 )( Y 2 − � ′ Y 1 )( I n ⊗ � ′ Y 1 ) ′ . qn � ( Y 2 − � Ψ 2 • 1 = δ Σ δ

  8. Case 1 - Corollary 1 Under the assumptions of Theorem 1, if − 1 ) Y ′ qn A ( � θ ) − Y 1 ( I n ⊗ � 1 = 0 , Σ then, � n 1 � µ = X i n i =1 1 − 1 ) Y ′ , � nq Y ( I n ⊗ � = Ψ Σ 1 − 1 ) � ′ ( I n ⊗ � � � Σ = Y Ψ Y . np

  9. flip-flop algorithm P.Dutilleul (1999) - Since ( c Σ ) ⊗ ( 1 c Ψ ), all the parameters of Σ and Ψ are not defined uniquely. - The direct product Σ ⊗ Ψ is uniquely defined. - The convergence of the MLE algorithm may be assessed by try- ing various initial solution. If all of the initial solutions tried result in the same direct product ˆ Σ ⊗ ˆ Ψ and the corresponding final solu- tions are ˆ Σ , ˆ Ψ satisfy the criterion of the second derivatives, then any of the final solutions ˆ Σ , ˆ Ψ should provide maximum likelihood estimates for Σ and Ψ ; otherwise, they correspond, at the least, to local extrema of the likelihood function.

  10. Case 1 - Corollary 2 Under the assumptions of Theorem 1, if A ( � θ ) = 1, then � n 1 � µ = X i n i =1 1 − 1 ) Y ′ , � nq Y ( I n ⊗ � = Ψ Σ 1 − 1 ) � ′ ( I n ⊗ � � � Σ = Y Ψ Y . np

  11. Case 2 The matrix Σ is unstructured and Ψ is a block partitioned matrix, � A ( θ ) � B Ψ = , B ′ Ω where A ( θ ) - a compound symmetric structure, i.e., A ( θ ) = (1 − θ ) I r + θ 1 r 1 ′ r , where 1 r denotes the column vector of size r with all elements equal to 1.

  12. Case 2 - Theorem 2 The maximum likelihood estimators of µ , Σ and Ψ satisfy the following equations: 1 1 − 1 ) Y ′ � r Y 1 ( I n ⊗ � = nqr ( r − 1) tr ( 1 r 1 ′ 1 ) − θ Σ r − 1 , n � 1 µ � = X i , n i =1 A ( � (1 − � θ ) I r + � θ 1 r 1 ′ θ ) = r , − 1 ′ ′ ′ np � � 1 ( I n ⊗ A ( � θ ) − 1 ) � Y 1 + ( � 2 − � 1 ( I n ⊗ � δ ))( I n ⊗ � Σ = Y Y Y Ψ 2 • 1 ) ′ ′ × ( � 2 − � 1 ( I n ⊗ � δ )) ′ , Y Y − 1 ) Y ′ − 1 ) Y ′ � ( Y 1 ( I n ⊗ � 1 ) − 1 Y 2 ( I n ⊗ � δ = Σ Σ 1 ,

  13. Case 2 - Theorem 2 where � � A ( � � θ ) B � Ψ = , ′ � � B Ω and ′ A ( � � A ( � θ ) � � Ψ 2 • 1 + � � θ ) � B = δ , Ω = δ δ , − 1 )( Y 2 − � ′ Y 1 )( I n ⊗ � ′ Y 1 ) ′ . qn � ( Y 2 − � Ψ 2 • 1 = δ Σ δ

  14. Case 3 Both matrices Σ and Ψ follow a compound symmetric covariance structure, i.e. (1 − ρ ) I p + ρ 1 p 1 ′ Ψ = p , σ 1 I q + σ 2 ( 1 q 1 ′ Σ = q − I q ) , where ρ , σ 1 and σ 2 are unknown parameters.

  15. Case 3 - Theorem 3 The maximum likelihood estimators of µ , Σ and Ψ satisfy n � 1 µ � = X i , n i =1 � Ψ = (1 − � ρ ) I p + � ρ 1 p 1 ′ p , � Σ = � σ 1 I q + � σ 2 ( 1 q 1 ′ q − I q ) , where λ 3 / � � q ( � λ 1 + ( q − 1) � q ( � λ 1 − � λ 4 − 1 1 σ 2 = 1 σ 1 � = λ 2 ) , � λ 2 ) , � ρ = λ 4 + p − 1 , � λ 3 / � � λ 1 , � λ 2 - distinct eigenvalues of Σ � λ 3 , � λ 4 - distinct eigenvalues of Ψ

  16. Case 3 - Theorem 3 and ˆ np (ˆ 3 t 1 + ˆ ˆ np ( q − 1) (ˆ 3 t 3 + ˆ 1 λ − 1 λ − 1 1 λ − 1 λ − 1 λ 1 = 4 t 2 ) , λ 2 = 4 t 4 ) , λ − 1 ˆ 1 ˆ λ − 2 4 ˆ λ 2 3 t 2 nq ˆ λ 3 − nq ˆ 3 ˆ λ − 1 − ˆ λ − 1 1 t 1 − ˆ λ − 1 λ 2 2 t 3 + 4 ( p − 1) λ − 1 ˆ 2 ˆ λ − 2 4 ˆ λ 2 3 t 4 p = ˆ λ 3 + ˆ + = 0 , , λ 4 ( p − 1) , ( p − 1) with t 1 = tr { P 1 p Y ( I n ⊗ P 1 q ) Y ′ } , t 2 = tr { Q 1 p Y ( I n ⊗ P 1 q ) Y ′ } , t 3 = tr { P 1 p Y ( I n ⊗ Q 1 q ) Y ′ } , t 4 = tr { Q 1 p Y ( I n ⊗ Q 1 q ) Y ′ } , where P 1 p = 1 p 1 p 1 ′ p and Q 1 p = I p − P 1 p and the observation matrix Y is the centered observation matrix.

  17. Case 4 The matrix Σ is unstructured and in Ψ is the matrix which all diagonal elements equal 1. − 1 − 1 Ψ = T 2 2 d TT d , where T : p × p - the symmetric matrix, T d : p × p - the diagonal matrix with diagonal elements the same as matrix T .

  18. Case 4 - Theorem 4 Maximum likelihood equations are given by the following relations: 1 1 np Σ = ˜ d T − 1 T d ) − 1 )˜ Y ′ ( I n ⊗ ( T 2 2 Y 1 1 1 1 1 − 1 d T − 1 + ( T − 1 T − 2 T − 1 T d T − 1 ) d + ( T − 1 T d AT 2 2 d AT 2 2 d A ) d T 2 2 = 0 , d where 1 1 d T − 1 T d − nq I p − Y ( I n ⊗ Σ − 1 ) Y ′ A = 2 nq T 2 2 and 1 1 1 ( T − 1 T d T − 1 ) d , ( T − 1 T 2 2 d A ) d 2 denote diagonal matrices. d AT

  19. Literature Dutilleul P. (1999). The MLE algorithm for the matrix normal distribution. J. Statist. Comput. Simul, vol. 64, 105-123. Srivastava M. S., von Rosen T. and von Rosen D.(2008). Models with a Kronecker Product Covariance Structure: Estimation and Testing. Mathematical Methods of Statistics, vol. 17, No. 4, 357–370. nska-´ Szczepa´ Alvarez A, Hao Ch., Liang Y., von Rosen D. (2016). Estimation equations for multivariate linear models with Kronec- ker structured covariance matrices. Communications in Statistics- Theory and Methods. DOI10.1080/03610926.2016.1165852

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend