estimating the competitive storage model with stochastic
play

Estimating the competitive storage model with stochastic trend: A - PowerPoint PPT Presentation

Estimating the competitive storage model with stochastic trend: A particle MCMC approach Kjartan Kloster Osmundsen 1 Tore Selland Kleppe 1 Atle Oglend 2 Roman Liesenfeld 3 1 Department of Mathematics and Physics University of Stavanger, Norway 2


  1. Estimating the competitive storage model with stochastic trend: A particle MCMC approach Kjartan Kloster Osmundsen 1 Tore Selland Kleppe 1 Atle Oglend 2 Roman Liesenfeld 3 1 Department of Mathematics and Physics University of Stavanger, Norway 2 Department of Safety, Economics and Planning University of Stavanger, Norway 3 Institute of Econometrics and Statistics University of Cologne, Germany EcoSta 2019 National Chung Hsing University June 25th 2019

  2. The competitive storage model The model [Deaton and Laroque, 1992] assumes: IID shocks ( z t ) - supply/harvest Costly storage: β = (1 − δ ) / (1 + r ) < 1 – δ is the commodity depreciation rate and r is the interest rate Storage is non-negative A deterministic demand function, given as a function of a price: D ( p t ) There exists an inverse demand function P ( x t ): D ( P ( x t )) = x t The price is considered fixed when making storage decisions Speculators are assumed to hold rational expectations Let I t be the inventory level at time t . The amount of stocks at hand is then given by x t = (1 − δ ) I t − 1 + z t The optimal storage policy implies p t = max [ P ( x t ) , β E t p t +1 ] Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 2 / 15

  3. The competitive storage model, continued The optimal storage policy implies p t = max [ P ( x t ) , β E t p t +1 ] In equilibrium, supply must equal demand, leading to the following price function: P ( x ) , ¯ � � f ( x ) = max f ( x ) , (1) ¯ f ( x ) = β Ef ((1 − δ ) σ ( x ) + z ) , σ ( x ) = x − D ( f ( x )) . Following [Oglend and Kleppe, 2017], we assume storage is non-negative and bounded from above at C ≥ 0: P ( x ) , ¯ � � �� f ( x ) = min P ( x − C ) , max f ( x ) (2) Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 3 / 15

  4. Equilibrium prices when storage is completely bounded P ( x ) , ¯ � � �� f ( x ) = min P ( x − C ) , max f ( x ) Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 4 / 15

  5. Numerical solution We solve for σ ( x ) and recover f ( x ): f S ( x ) = P ( x − σ ( x ))  x ∗ 0 if x < ˆ   x ∗ ≤ x ≤ ˆ x ∗∗ σ ( x ) ≈ , s ( x ) if ˆ  x ∗∗ if x > ˆ  C x ∗ = 0, ˆ x ∗∗ = C , s ( x ) linear: Iteratively, using initial values ˆ x ∗ � � � ˆ n +1 = D β f S ( z ) φ ( z ) dz x ∗∗ � � f S ((1 − δ ) C + z ) φ ( z ) dz � ˆ n +1 = D β + C x ∗ x ∗∗ Define the grid x g as [ˆ n +1 , ˆ n +1 ] For each grid point j , find updated s ( x ) to be the solution in s to s = x ( j ) � � � − D β f S ((1 − δ ) s + z ) φ ( z ) dz g Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 5 / 15

  6. Stochastic trend Expressing the storage model as a time series model for (observed) log-prices p t : p t = log f ( x t ) , (3) x t = (1 − δ ) σ ( x t − 1 ) + z t , z t ∼ iid N (0 , 1) , Adding a stochastic trend: p t = k t + log f ( x t ) , ε t ∼ iid N (0 , v 2 ) , k t = k t − 1 + ε t , (4) x t = (1 − δ ) σ ( x t − 1 ) + z t , z t ∼ iid N (0 , 1) , The inverse demand function is set to P ( x ) = exp( − bx ) Objective: For given price data, estimate the storage model’s structural parameters θ = ( v , δ, b ), together with the latent parameters ( k and x ) Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 6 / 15

  7. Implicit stochastic trend p t = k t + log f ( x t ) , ε t ∼ iid N (0 , v 2 ) , k t = k t − 1 + ε t , x t = (1 − δ ) σ ( x t − 1 ) + z t , z t ∼ iid N (0 , 1) , For computational convenience, it is possible to express the stochastic trend implicitly, as k t − 1 = p t − 1 − log f ( x t − 1 ), and thus � f ( x t ) � ǫ t ∼ iid N (0 , v 2 ) , p t = p t − 1 + log + ǫ t , f ( x t − 1 ) x t = (1 − δ ) σ ( x t − 1 ) + z t , z t ∼ iid N (0 , 1) . Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 7 / 15

  8. Particle filter The joint conditional probability density of p t and x t can be derived analytically: p ( p t , x t | p t − 1 , x t − 1 ) ∝ 1 1 � 2 � � v exp − p t − p t − 1 − log f ( x t ) + log f ( x t − 1 ) 2 v 2 − 1 2 ( x t − (1 − δ ) σ ( x t − 1 )) 2 � We estimate the marginal likelihood using the sampling importance resampling (SIR) particle filter [Gordon et al., 1993] Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 8 / 15

  9. Particle marginal Metropolis-Hastings � f ( x t ) � ǫ t ∼ iid N (0 , v 2 ) , p t = p t − 1 + log + ǫ t , f ( x t − 1 ) x t = (1 − δ ) σ ( x t − 1 ) + z t , z t ∼ iid N (0 , 1) . Priors: v 2 ∼ 0 . 1 /χ 2 (10) , δ ∼ B (2 , 20), b ∼ N (0 , 1) PMMH acceptance probability [Andrieu et al., 2010]: � p ( y 1: T | θ ∗ ) p ( θ ∗ ) ˆ q ( θ i − 1 | θ ∗ ) � min 1 , (5) p ( y 1: T | θ i − 1 ) p ( θ i − 1 ) ˆ q ( θ ∗ | θ i − 1 ) We use a symmetric proposal density q ( θ i − 1 ) ∼ N ( θ t − 1 , Σ), which entails that Eq. (5) is not dependent on q . Σ is set adaptively [Haario et al., 2001]. Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 9 / 15

  10. Application The estimation methodology is applied to monthly commodity prices r = 1 . 05 1 / 12 − 1, C = 10 Importance density: q t ( x t , x t − 1 ) ∼ N ((1 − δ ) σ ( x t − 1 ) , 1). natgas coffee cotton aluminium Acc. rate 0.35 0.24 0.35 0.37 v Post. mean 0.097 0.061 0.046 0.045 Post. std. 0.008 0.004 0.003 0.002 ESS 566 604 792 843 δ Post. mean 0.012 0.002 0.001 0.001 Post. std. 0.005 0.001 0.001 0.001 ESS 819 651 998 1015 b Post. mean 0.441 0.386 0.322 0.196 Post. std. 0.266 0.097 0.06 0.068 ESS 580 533 852 781 Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 10 / 15

  11. Cotton log p k 1.5 1.0 0.5 0.0 −0.5 1990 2000 2010 2018 t Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 11 / 15

  12. Aluminium log p k 8.4 8.0 7.6 7.2 1990 2000 2010 2018 t Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 12 / 15

  13. Cotton linear RCS3 RCS7 Stochastic 1.00 0.75 0.50 k 0.25 0.00 1990 2000 2010 2018 t Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 13 / 15

  14. Aluminium linear RCS3 RCS7 Stochastic 8.00 7.75 k 7.50 7.25 7.00 1990 2000 2010 2018 t Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 14 / 15

  15. Bibliography Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle markov chain monte carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 72(3):269–342. Deaton, A. and Laroque, G. (1992). On the behaviour of commodity prices. The review of economic studies , 59(1):1–23. Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing) , volume 140, pages 107–113. IET. Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli , 7(2):223–242. Oglend, A. and Kleppe, T. S. (2017). On the behavior of commodity prices when speculative storage is bounded. Journal of Economic Dynamics and Control , 75:52–69. Osmundsen, Kleppe, Oglend, Liesenfeld Storage model with stochastic trend EcoSta 2019 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend