estimating particle non sphericity
play

Estimating Particle Non-sphericity from the Fourier Spectrum of Its - PowerPoint PPT Presentation

Estimating Particle Non-sphericity from the Fourier Spectrum of Its Light-scattering Pattern Andrey Romanov Laboratory of Cytometry and Biokinetics Voevodsky Institute of Chemical Kinetics and Combustion SB RAS Introduction Measuring


  1. Estimating Particle Non-sphericity from the Fourier Spectrum of Its Light-scattering Pattern Andrey Romanov Laboratory of Cytometry and Biokinetics Voevodsky Institute of Chemical Kinetics and Combustion SB RAS

  2. Introduction • Measuring light scattering by a single particle is a powerful method for its characterization • Most methods rely on the assumption of a particle shape model • Deviations from the proposed shape model cause many problems • Consider the simplest case – the deviation from a homogeneous sphere 3000 experiment Mie theory 2500 2000 ? Intensity 1500 1000 500 0 10 20 30 40 50 60 70 2 Scattering angle, degree

  3. Spectrum of light-scattering 2000 pattern Spectrum amplitude 1500 𝑇 𝑤 = ෠ ℱ 𝐽(𝜄) 1000 500 Fourier-based operator 0 0 10 20 30 40 50 60 70 Frequency ෠ ℱ 4 8000 3 2 6000 Spectrum phase Intensity 1 4000 0 -1 2000 -2 -3 0 10 20 30 40 50 60 -4 Scattering angle, degree 0 10 20 30 40 50 60 70 3 Frequency Romanov et al. J. Quant. Spectrosc. Radiat. Transfer 200 , 280 – 294 (2017).

  4. Spectrum parameters 𝐵 0 – Zero-frequency amplitude 2000 𝑀 – peak position Spectrum amplitude 1500 𝐵 𝑞 – peak amplitude 1000 𝜒 – peak phase 1.55 500 𝜇 = 660 𝑜𝑛 𝑜 𝑛𝑓𝑒𝑗𝑣𝑛 = 1.331 0 1.50 0 10 20 30 40 50 60 70 Frequency Refractive index 4 3 1.45 2 Spectrum phase 1 1.40 0 -1 1.35 -2 -3 0 2 4 6 8 10 12 14 -4 4 0 10 20 30 40 50 60 70 Size,  m Frequency

  5. Spectrum parameters 𝐵 0 – Zero-frequency amplitude 2000 𝑀 – peak position Spectrum amplitude 1500 𝐵 𝑞 – peak amplitude 1000 𝜒 – peak phase The goal: 500 0 𝑔: 𝑇 𝑤 → 𝑄 0 10 20 30 40 50 60 70 Frequency 4 𝑕: 𝑄 → 𝜁 - non-sphericity 3 2 𝑄 = 𝑕(𝜁, 𝑏, 𝛽, 𝑜, … ) Spectrum phase 1 0 -1 -2 Weak dependency 𝜁 ≅ 𝑕 −1 (𝑄) -3 -4 5 0 10 20 30 40 50 60 70 Frequency

  6. Rayleigh – Gans-Debye approximation   1 1 m   ( 1 ) 1 x m 𝑐 𝛽 – orientation Incident light direction 𝑏 𝑦 Changes in main spectral peak = 𝐺(𝑏𝛿) 𝛿 ≝ 𝜁 2 − 1 (squared eccentricity) 𝛽 < 40° Changes in phase 𝜁 = 𝑏 Changes in amplitude 𝛽 > 40° 𝑐 (aspect ratio) 6

  7. Algorithm for non-sphericity estimation LSP 𝑎 𝜉 Spectrum Spectral parameter 𝑎 𝜉 − 𝑎 0 𝜉 𝑄 = 𝑎 𝜉 − 𝑎 0 𝜉 Complex shape of the w peak 𝑎 0 𝜉 Spectral method* (𝑦 sp , 𝑜 sp ) LSP (Mie) Spectrum 𝑄 = 𝑎 𝜉 − 𝑎 0 𝜉 w ≝ න 𝜉 𝑎 𝜉 − 𝑎 0 𝜉 𝑒𝑤 7 * Romanov et al. J. Quant. Spectrosc. Radiat. Transfer 200 , 280 – 294 (2017).

  8. Weighted norm of complex spectral peak Non-sphere 1.0 1 𝑎 𝜉 Sphere 0.8 Spectrum amplitude 0 Spectrum phase 0.6 -1 0.4 -2 Non-sphere 0.2 Sphere 𝑎 0 𝜉 -3 0.0 -20 -10 0 10 20 -20 -10 0 10 20 Weight Frequency Frequency 𝑎 𝜉 − 𝑎 0 𝜉 w ≝ න 𝜉 𝑎 𝜉 − 𝑎 0 𝜉 𝑒𝑤 8

  9. Spectral parameter 𝑄 Simulated spheroids in the range of milk fat globules 𝑏 ∈ 3, 6 𝜈𝑛 𝑜 ∈ 1.44, 1.49 𝜁 ∈ 1, 1.4 𝛽 ∈ 0°, 90° 𝑏 ∈ 60, 140 𝑛 ∈ 1.07, 1.11 9

  10. Classifying using the spectral parameter 𝑄 Non-spheres 40 300 35 250 30 Spectral parameter P Spectral parameter 200 25 20 150 15 100 10 50 5 0 0 0 20 40 60 80 100 120 140 0 5 10 15 20 25 30 x sp  x sp  Spheres Linear part 10

  11. Estimating non-sphericity 40 35 30 Spectral parameter P 25 20 15 10 5 0 0 5 10 15 20 25 30 x sp  min 11 max

  12. Experiment with milk fat globules 400 160 350 140 300 120 250 100 Count Count 200 80 150 60 100 40 50 20 0 0 0 5 10 15 20 25 30 35 40 45 50 0 25 50 75 100 125 150 175 200 225 250 Spectral parameter P Spectral parameter P 12 Konokhova et al., International Dairy Journal/ Vol. 39, p. 316-323, 2014

  13. Experiment with milk fat globules 300 250 Spheroids Spheres 200 Count 150 100 50 F-test 0 0 10 20 30 40 50 60 70 80 90 100 Spheres Spectral parameter P Agreement ~ 95% 13 Konokhova et al., International Dairy Journal/ Vol. 39, p. 316-323, 2014

  14. Red blood cells lysis Add lysis buffer The spherization process 14

  15. Experiment with RBC’s spherization 400 1.20 350 1.18 1.16 300 Effective aspect ratio  sp Spectral parameter P 1.14 250 1.12 200 1.10 1.08 150 1.06 100 1.04 50 1.02 1.00 0 0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000 RBC's index RBC's index 𝜁 𝑓𝑔𝑔 𝑛𝑗𝑜 = 1.0 4 15 Chernyshova et al. J. Theor. Biol./ Vol. 393, p. 194-202, 2016

  16. Effective aspect ratio of red blood cell 3.5 3.0 2.5 2.0 Z(r) Fully spherized RBCs 1.5 Spheroid  = 1.04 Sphere 1.0 0.5 0.0 -3 -2 -1 0 1 2 3 r 16

  17. Conclusion • New method to estimate an effective aspect ratio (close to 1) of single particles using the Fourier spectrum of its LSP • Based on the weighted complex deviation of the spectral peak from that for the equivalent sphere • The applicability range includes large milk fat globules, red blood cells, and other biological objects • Qualitative agreement (and superior sensitivity) with other methods on the real experimental data • О pen question about the final form of RBCs in the spherization process 17

  18. Thank you ! email: a.v.romanov94@gmail.com 18

  19. Norm of the complex spectrum peak shape L = 64.4 10 1.0 8 Spectrum amplitude / A p 6 3 Spectrum amplitude, 10 0.5 A p 4 2 0.0 0 -2 -0.5 -4 𝑎 𝜉 Re Z( v ) Real part -6 Im Z( v ) Imaginary part -1.0 -8 Amplitude Z( v ) Amplitude -10 -20 -10 0 10 20 0 10 20 30 40 50 60 70 80 90 Frequency  L Frequency Weight 𝑎 𝜉 − 𝑎 0 𝜉 w ≝ න 𝜉 𝑎 𝜉 − 𝑎 0 𝜉 𝑒𝑤 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend