monte carlo methods in particle physics
play

Monte Carlo Methods in Particle Physics Bryan Webber University of - PowerPoint PPT Presentation

Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007 Monte Carlo Methods 5 Bryan Webber Monte Carlo Event Generation Basic Principles Event Generation Parton Showers


  1. Monte Carlo Methods in Particle Physics Bryan Webber University of Cambridge IMPRS, Munich 19-23 November 2007 Monte Carlo Methods 5 Bryan Webber

  2. Monte Carlo Event Generation • Basic Principles • Event Generation • Parton Showers • Hadronization • Underlying Event • Event Generator Survey • Matching to Fixed Order • Beyond Standard Model Monte Carlo Methods 5 Bryan Webber

  3. ME-PS Matching • Two rather different objectives: • Matching parton showers to NLO matrix elements, without double counting – MC@NLO – POWHEG • Matching parton showers to LO n-jet matrix elements, minimizing jet resolution dependence – CKKW – Dipole – MLM Matching – Comparisons Monte Carlo Methods 5 Bryan Webber

  4. MC@NLO Recall simple one-dim. example from lecture 1: x = gluon energy or two-parton invariant mass. Divergences regularized by dimensions. Cross section in d dimensions is: Infrared safety: KLN cancellation theorem: Monte Carlo Methods 5 Bryan Webber

  5. Subtraction Method Exact identity: J Two separate finite integrals. Monte Carlo Methods 5 Bryan Webber

  6. Modified Subtraction � 1 dx σ J = M ( x ) F J 1 ( x ) − V F J + O (1) V F J � � 0 0 x 0 Now add parton shower: F J result from showering after 0,1 emissions. 0 , 1 ⇒ But shower adds to 1 emission. Must subtract M MC /x this, and add to 0 emission (so that fixed) F tot 0 , 1 = 1 ⇒ σ tot � 1 dx σ J {M ( x ) − M MC ( x ) } F J � = 1 ( x ) x 0 − {V − M MC ( x ) } F J + O (1) V F J � 0 0 MC good for soft and/or collinear ⇒ M MC (0) = M (0) 0 & 1 emission contributions separately finite now! (But some can be negative “counter-events”) Monte Carlo Methods 5 Bryan Webber

  7. MC@NLO Results • WW production at LHC NLO MC@NLO HERWIG p (WW) Interpolates between MC & NLO in T ∆ φ (WW) ≃ 0 Above both at S Frixione & BW, JHEP 06(2002)029 Monte Carlo Methods 5 Bryan Webber

  8. W + W − : MC@NLO vs Resummations Plots from M. Grazzini JHEP 0601(2006)095 ◮ Highly non-trivial test (of both computations) for shapes and rates ! p T ) 2 where E T ll = � � p 2 T ll + m 2 E T ) 2 − ( p T ll + / ◮ M TWW = ( E T ll + / ll � p 2 T + m 2 and / E T ≡ / ll (Rainwater & Zeppenfeld) ◮ Cuts involved in definition of M TWW : ∆ φ l + l − < π / 4, M l + l − > 35 GeV, p ( l + ,l − ) > 25 GeV, 35 < p ( l + ,l − ) < 50 GeV, p WW < 30 GeV Tmin Tmax T Monte Carlo Methods 5 Bryan Webber

  9. W + W − Spin Correlations 0.03 0.06 Normalized to 1 Normalized to 1 MCatNLO, no spin corr. MCatNLO, no spin corr. 0.025 0.05 MCatNLO, spin corr. included MCatNLO, spin corr. included Sherpa Sherpa 0.02 0.04 0.015 0.03 0.01 0.02 0.01 0.005 0 0 0 50 100 150 200 250 300 350 400 450 500 0 0.5 1 1.5 2 2.5 3 M (GeV) � � ll ll Plots from W. Quayle (preliminary) Monte Carlo Methods 5 Bryan Webber

  10. b Production: PS MC vs MC@NLO � In parton shower MC’s, 3 classes of processes can contribute: FCR GSP FEX � All are needed to get close to data (RD Field, hep-ph/0201112): ����������������������������������������������� ����������������������������������������������� ������� ������� ���������������������� ������������ ������ ���������������������� ��������������� ������ ���������������������� ����������������� ������� ������� �������������������� �������� ������� ������� �������� µ �� µ �� ��������������� µ µ µ ��������������� µ µ µ ������� ������� ������� ������� ������� ������� ������� ������� ������� ������ ������� ������� � �� �� �� �� �� �� �� � �� �� �� �� �� �� �� �������������� �������������� Monte Carlo Methods 5 Bryan Webber

  11. GSP and FEX contributions in HERWIG PS MC � GSP, FEX and FCR are complementary and all must be generated � GSP cuto ff (PTMIN) sensitivity depends on cuts and observable � FEX sensitive to bottom PDF � GSP e ffi ciency very poor, ∼ 10 − 4 � All these problems are avoided with MC@NLO! Monte Carlo Methods 5 Bryan Webber

  12. MC@NLO: B Production at Tevatron � B → J/ ψ results from Tevatron Run II ⇒ B hadrons (in Good agreement (and MC efficiency) S Frixione, P Nason & BW, JHEP 0308(2003)007 M Cacciari et al., JHEP 0407(2004)033 Monte Carlo Methods 5 Bryan Webber

  13. MC@NLO Di-b Jet Production ◮ These observables are very involved ( b -jets at hadron level) and cannot be computed with analytical techniques; ◮ The underlying event in Pythia is fitted to data; default Herwig model (used in MC@NLO) does not fit data well (lack of MPI). Monte Carlo Methods 5 Bryan Webber

  14. MC@NLO b-Jets: Improved Underlying Event ◮ The JIMMY underlying event model includes multiple parton interactions and interfaces to Herwig ⇒ interfaces to MC@NLO ◮ The importance of the underlying event shows the necessity of embedding precise computations in a Monte Carlo framework. Monte Carlo Methods 5 Bryan Webber

  15. MC@NLO: Higgs Production at LHC V Del Duca, S Frixione, C Oleari & BW, in prep. Good agreement with state-of-the-art resummation Monte Carlo Methods 5 Bryan Webber

  16. POWHEG Positive Weight Hardest Emission Generator • Method to generate hardest emission first, with NLO accuracy, independent of PSEG • Can be interfaced to any PSEG • No negative weights • Inaccuracies only affect next-to-hardest emission • In principle, needs ‘truncated showers’ P Nason & G Ridolfi, JHEP08(2006)077 S Frixione, P Nason & G Ridolfi, arXiv:0707.3088 S Frixione, P Nason & C Oleari, arXiv:0709.2092 Monte Carlo Methods 5 Bryan Webber

  17. POWHEG How it works (roughly) In words: works like a standard Shower MC for the hardest radiation, with care to maintain higher accuracy. Inclusive cross section NLO inclusive cross section. Positive if NL < LO   INFINITE INFINITE Φ n = Born variables � ¯( Φ n ) = B ( Φ n ) +  V ( Φ n ) ¯ n , Φ r ) d Φ r   + R ( Φ B  Φ r = radiation vars . FINITE ! Sudakov form factor for hardest emission built from exact NLO real emission   � θ ( t r − t ) R ( Φ n , Φ r ) ∆ t = exp d Φ r  −   B ( Φ n )  FINITE because of θ function with t r = k T ( Φ n , Φ r ) , the transverse momentum for the radiation. Monte Carlo Methods 5 Bryan Webber

  18. POWHEG and MC@NLO comparison: Top pair production Good agreement for all observable considered (di ff erences can be ascribed to di ff erent treatment of higher order terms) Monte Carlo Methods 5 Bryan Webber

  19. POWHEG for e + e hadrons O Latunde-Dada, S Gieseke, B Webber, JHEP02 (2007) 051, hep-ph/0612281 Monte Carlo Methods 5 Bryan Webber

  20. Truncated Shower • In angular-ordered shower, hardest emission is not necessarily the first • Need to add softer, wider-angle emissions • Checked for up to one such emission in e + e - q z z t (2 � x)E k T g (1 � z) z t (2 � x)E z t (2 � x)E q Z/ �� (2 � x)E � xE q q t p T (1 � z )(2 � x)E t g Monte Carlo Methods 5 Bryan Webber

  21. Effect of truncated shower Observable Herwig++ ME Nason@NLO Nason@NLO with truncated shower w/o truncated shower 1 − T 36.52 9.03 9.81 Thrust Major 267.22 36.44 37.65 Thrust Minor 190.25 86.30 90.59 Oblateness 7.58 6.86 6.28 Sphericity 9.61 7.55 9.01 Aplanarity 8.70 22.96 25.33 Planarity 2.14 1.19 1.45 C Parameter 96.69 10.50 11.14 D Parameter 84.86 8.89 10.88 M high 14.70 5.31 6.61 M low 7.82 12.90 13.44 M di ff 5.11 1.89 2.09 B max 39.50 11.42 12.17 B min 45.96 35.2 36.16 B sum 91.03 28.83 30.58 B di ff 8.94 1.40 1.14 N ch 43.33 1.58 10.08 � χ 2 � / bin 56.47 16.96 18.49 Table 2: χ 2 / bin for all observables we studied. Small but beneficial effect Monte Carlo Methods 5 Bryan Webber

  22. CKKW Matching • Use Matrix Elements down to scale Q 1 • Use Parton Showers below Q 1 • Correct ME by reweighting • Correct PS by vetoing • Ensure that Q 1 cancels (to NLL) S Catani, F Krauss, R Kuhn & BW, JHEP11 (2001) 063 Monte Carlo Methods 5 Bryan Webber

  23. - Example: e + e hadrons • 2- & 3-jet rates at scale Q 1 : [ ∆ q ( Q, Q 1 )] 2 , R 2 ( Q, Q 1 ) = � Q dq ∆ q ( Q, Q 1 ) R 3 ( Q, Q 1 ) = 2 ∆ q ( Q, Q 1 ) ∆ q ( q, Q 1 ) Γ q ( Q, q ) Q 1 × ∆ q ( q, Q 1 ) ∆ g ( q, Q 1 ) � Q 2 [ ∆ q ( Q, Q 1 )] 2 = dq Γ q ( Q, q ) ∆ g ( q, Q 1 ) Q Q 1 � � Γ q ( Q, q ) = 2 C F α S ( q ) q − 3 ln Q q 4 q π Q 1 Monte Carlo Methods 5 Bryan Webber

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend