environmental forecasting on the base of online
play

Environmental forecasting on the base of online-integrated modeling - PowerPoint PPT Presentation

Environmental forecasting on the base of online-integrated modeling technology Vladimir Penenko Elena Tsvetova Institute of Computational Mathematics and Mathematical Geophysics SD RAS Online-integrated modeling technology Models of


  1. Environmental forecasting on the base of online-integrated modeling technology Vladimir Penenko Elena Tsvetova Institute of Computational Mathematics and Mathematical Geophysics SD RAS

  2. Online-integrated modeling technology • Models of hydrodynamics • Models of atmospheric chemistry • Data of observations / assimilation • Technology of modeling • New algorithms • New mathematics/numerics (tera- (12), peta-(15), exa- (18)

  3. Model of atmospheric dynamics ¡ u 1 p ∂ ∂ v u fv kw F + ⋅∇ − + = − + u t x ∂ ρ ∂ v 1 p ∂ ∂ v v fu F + ⋅∇ + = − + v t y ∂ ρ ∂ w 1 p ∂ ∂ v w ku g F + ⋅∇ − = − − + w t z ∂ ρ ∂ c c p ⎛ ⎞ ∂ + p p v p ( v ) p 1 c F f ⋅∇ + ∇⋅ = − ρ + ⎜ ⎟ p p p t c c ∂ ⎝ ⎠ v v c T R ∂ p d v T ( (1 ) v ) T F f + ⋅∇ + + α ∇⋅ = + T T t c c ∂ v v ∂ ρ 1 − v 0, p R (1 ) T ( ) + ∇⋅ ρ = ρ = + α a d t ∂

  4. ¡ Transport and transformation of humidity ¡ q ∂ ( ) v v q S S F + ⋅∇ = − + + v l f q t ∂ v q ∂ c v q S F + ⋅∇ = + c c q t ∂ c q 1 ∂ ∂ l v q q v S F + ⋅∇ + z ρ = + l l lT l q t ∂ ρ ∂ l q 1 ∂ ∂ f v q q v S F + ⋅∇ + z ρ = + f f fT f q t f ∂ ρ ∂

  5. Transport and transformation model of gas pollutants and aerosols ∂ πϕ πϕ i L div ( u grad ) ((S ) f (x,t) r ) 0, ( ) ϕ ϕ ≡ + π π ϕ − µ ϕ + π ϕ − − = i i i i i i i t ∂ Operators of transformation R U ⎧ ⎫ i r − s (q ) { } ( ) S ( ) P( ) ( ) k(q) s (q ) s (q ) − + ∑ ∏ j ϕ ϕ = ϕ ϕ − Π ϕ ≡ − ϕ ⎨ ⎬ g i i j i ⎩ ⎭ q 1 j 1 = = σ M M 1 ⎡ ⎤ ⎛ ⎞ ( ) S K , d ( ) ∑ ( ) ∑ ( ) ( ) ϕ σ = ∫ γ ϕ σ α σ − σ σ ϕ σ − σ σ ⎢ ⎥ ⎜ ⎟ a i ik k 1 km 1 1 k 1 1 2 ⎝ ⎠ ⎣ ⎦ k 1 m 1 = = σ 0 σ 2 M M ⎛ ⎞ ∂ ∂ K , d e ( ) ( ) ∑ ( ) ( ) ( ) − ϕ σ ∫ σ σ β ϕ σ σ − ⎡ ϕ σ ⎤ + ⎡ ν ϕ σ ⎤ ⎜ ⎟ ⎣ ⎦ ⎣ ⎦ i 1 ik k 1 1 i i i i 2 ∂ σ ∂ σ ⎝ ⎠ k 1 = σ 0 ) R Q , i 1, M ( ) ( ) − ϕ σ + σ = i i i

  6. Goals • Development of methodology for construction of integrated models of atmospheric dynamics and air quality in on(off)-line regimes with account of all accessible observational data • Design of adequate/open modeling system

  7. Variational principle as a tool for model integration It presents the equations and relations describing the development of multi-component and multi-scale processes in a simple invariant form; It holds the synthesis of continuum and discrete presentations of mathematical models and state functions;

  8. Variational principle as a tool for model integration It provides consistency for all technology stages of mathematical modeling; • Euler, Lagrange, Jacobi, and Hamilton principles are interconnected among themselves: the stationary value of some definite integral (functional) is considered in each of them.

  9. A CONCEPT OF ENVIRONMENTAL MODELING � • variational principles • combined use of models and observed data, • forward and inverse modeling procedures, • methodology for description of links between regional and global processes ( including climatic changes) by means of orthogonal decomposition of functional spaces for analysis of data bases and phase spaces of dynamical systems Theoretical background • control theory, • sensitivity theory, • risk and vulnerability theory

  10. Basic elements for concept implementation: • models of processes • data and models of measurements • adjoint problems • constraints on parameters and state functions • functionals: objective, quality, control, restrictions etc. • sensitivity relations for target functionals and constraints • feedback equations for inverse problems

  11. Statement of the problem • Mathematical model      ∂ ϕ B G ( , Y ) f r 0 + ϕ − − = , t ∂       0 0 , Y Y ϕ = ϕ + ξ = + ς ; 0 0  ( D ) is the state function , ϕ ∈ ℑ  t Y ( D ) is the parameter vector . ∈ ℜ t G is the “space” operator of the model   , • A set of measured data D m Ψ on ϕ m m t    [ H ( )] Ψ = ϕ + η , m m  [ H ( )] ϕ is the model of observations . m     r , , , • ξ ς η are the terms describing Desired! uncertainties and errors of the corresponding objects.

  12. General form of functionals r r r ( ) F ( ) ( , ) x t dDdt F , , k 1,..., K ( ) Φ ϕ = ∫ ϕ χ ≡ χ = k k k k k D t F are the Lipschitz's functions of the given form, differentiable, bounded k dDdt D , * ( D ) χ χ ∈ ℑ are Radon’s or Dirac’s measures on . k t k t Quality functionals r r r r T ( ) ( H ( )) M ( H ( )) ( , ) x t dDdt , Φ ϕ = Ψ− ϕ Ψ− ϕ χ ∫ k m m k D t “Measurement” functionals K r r r r r m ( ) [ H ( ) ] ( x x ) dDdt , x D ∑ ∫ Φ ϕ = ϕ δ − ∈ mk mk t mk k 1 = D t Restriction functionals     Differentiability ( x , t ) N , ( ( x , t ) 0 ϕ ≤ ϑ ϕ ≤ distributive constraints k     in extended sense ( ) ( ( ) ( ) ) ( x , t ) dDdt Φ ϕ = ϑ ϕ + ϑ ϕ χ ∫ k k k k D t

  13. Variational form of model ’ s set: hydrodynamics+ chemistry+ hydrological cycle ⎧ ⎫ n ⎪ ⎪ ( ) ( ) I Y , ((S ) f (x,t) r ) dDdt ∗ ∗ ∑ ∗ ∗ ∗ ϕ , ϕ ≡ Λϕ , ϕ + ∫ π ϕ − − ϕ + ⎨ ⎬ i i i i ⎪ ⎪ i 1 = ⎩ ⎭ D t { } ( * * ) ( * * ) pp div u pdiv u pp TT div u dDdt − + α + α + ∫ p T D t { T } * pu d dt 0 W dDdt ( ) ( ) Ω = ∫ α α ρ ρ − ρ ρ − ρ + ∫ n a a a ρ D Ω t t

  14. Variational form of convection-diffusion operators ⎛ ⎧ 1 ∗ ⎡ ⎤ ⎛ ⎞ ∂ πϕ πϕ ∂ πϕ πϕ ⎪ ( ) ( ) div u div u ∗ ∗ ∗ ∗ ∗ ∗ Λϕ , ϕ ≡ ⎝ ∫ ϕ − ϕ + ϕ πϕ − ϕ πϕ ⎜ ⎨ ⎢ ⎥ ⎜ ⎟ 2 t t ⎜ i ∂ ∂ ⎪ ⎝ ⎠ ⎣ ⎦ ⎩ D t 1 } t grad grad ∗ ∗ dDdt ∗ ∗ dD + π µ ϕ ϕ + ∫ ϕϕ π + 0 ϕ 2 D ⎞ 1 ⎡ ∂ ϕ ⎤ ⎛ ⎞ u R q ∗ d dt ( ) ϕ − µ + α ϕ − ϕ π Ω ∫ ⎟ ⎜ ⎟ ⎢ ⎥ n b b b 2 n ⎟ ∂ ⎝ ⎠ ⎣ ⎦ ⎠ Ω t i R q = 0 boundary conditions on ϕ − ϕ − Ω b b t

  15. Augmented functional for construction of optimal algorithms and uncertainty assessment r r r r r r % { 1 h h T T ( ) ( ) 0.5 ( M ) ( r M r ) Φ ϕ = Φ ϕ + α η η + α k 1 2 2 m h D D t t r r r r r r r h I ( , , Y ) } ∗ T T h ⎡ ⎤ + ⎣ ϕ ϕ ( M ) ( M ) + α ξ ξ + α ζ ζ ⎦ 3 3 4 4 h h h h D R ( D ) D t t M i , ( i 1 , 4 ) = are the weight matrices, 4 0 , 1 are the weight coefficients, ∑ α ≥ α = i i i 1 ϕ   , = are the solutions of the direct and adjoint problems generated from ∗  ϕ  Y  h I ( , , ) 0 ∗ ϕ ϕ = Additive aggregation of the functionals for decomposition

  16. Variation of augmented cost functional. Consistency and optimization of algorithms r r % % h h r r r ( ) ( ) ⎛ ⎞ ⎛ ⎞ δ Φ ϕ δ Φ ϕ % h * ( ) k , k , r r δ Φ ϕ = δϕ + δϕ + ⎜ ⎟ ⎜ ⎟ k * ∂ ϕ ∂ ϕ ⎝ ⎠ ⎝ ⎠ r r r % % % h h h ( ) ( ) ( ) ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ δ Φ ϕ δ Φ ϕ δ Φ ϕ k k k , r , , Y + δ + δξ + δ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ r Y ∂ ∂ ξ ∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend