entropy theory for sofic group actions
play

Entropy Theory for Sofic Group Actions Lewis Bowen Workshop on II 1 - PowerPoint PPT Presentation

Entropy Theory for Sofic Group Actions Lewis Bowen Workshop on II 1 factors, May 2011 Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 1 / 48 Notation Let ( X , ) be a standard probability space. Lewis Bowen (Texas


  1. The Ornstein-Weiss Example Theorem (Ornstein-Weiss, 1987) If F = � a , b � is the rank 2 free group then the full 2 -shift over F factors onto the full 4 -shift over F . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 9 / 48

  2. The Ornstein-Weiss Example Theorem (Ornstein-Weiss, 1987) If F = � a , b � is the rank 2 free group then the full 2 -shift over F factors onto the full 4 -shift over F . Define φ : ( Z / 2 Z ) F → ( Z / 2 Z × Z / 2 Z ) F by Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 9 / 48

  3. The Ornstein-Weiss Example Theorem (Ornstein-Weiss, 1987) If F = � a , b � is the rank 2 free group then the full 2 -shift over F factors onto the full 4 -shift over F . Define φ : ( Z / 2 Z ) F → ( Z / 2 Z × Z / 2 Z ) F by � � φ ( x )( g ) = x ( g ) + x ( ga ) , x ( g ) + x ( gb ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 9 / 48

  4. More on factors Open : If G is non-amenable, does every Bernoulli shift factor onto every Bernoulli shift? Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 10 / 48

  5. More on factors Open : If G is non-amenable, does every Bernoulli shift factor onto every Bernoulli shift? Ball (2005): for every non-amenable group G there is some m = m ( G ) > 0 such that the m -shift factors onto every Bernoulli shift. Bowen (2009): if G contains a rank 2 free subgroup then ‘yes’. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 10 / 48

  6. Recap If G is non-amenable then, for some n , the n -shift factors onto all other Bernoulli shifts. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 11 / 48

  7. Recap If G is non-amenable then, for some n , the n -shift factors onto all other Bernoulli shifts. So if “entropy theory” requires the n -shift to have entropy log ( n ) , and that entropy does not increase under factors then there is no entropy theory for non-amenable groups. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 11 / 48

  8. New results Theorem (L. B., 2009) If G is a sofic group then Kolmogorov’s direction holds. I.e., if G � ( K G , κ G ) is isomorphic to G � ( L G , λ G ) then H ( K , κ ) = H ( L , λ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 12 / 48

  9. The case G = Z . Let T : X → X be an automorphism of ( X , µ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 13 / 48

  10. The case G = Z . Let T : X → X be an automorphism of ( X , µ ) . Let φ : X → A be an observable (i.e., a measurable map into a finite set). Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 13 / 48

  11. The case G = Z . Let T : X → X be an automorphism of ( X , µ ) . Let φ : X → A be an observable (i.e., a measurable map into a finite set). Let x ∈ X be a typical element and consider the sequence ( . . . , φ ( T − 1 x ) , φ ( x ) , φ ( Tx ) , . . . ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 13 / 48

  12. The case G = Z . Let T : X → X be an automorphism of ( X , µ ) . Let φ : X → A be an observable (i.e., a measurable map into a finite set). Let x ∈ X be a typical element and consider the sequence ( . . . , φ ( T − 1 x ) , φ ( x ) , φ ( Tx ) , . . . ) . The idea: For n > 0, count the number of sequences ( a 1 , a 2 , . . . , a n ) with elements a i ∈ A that approximate the above sequence. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 13 / 48

  13. Local statistics Let W ⊂ Z be finite. ( W stands for window ) Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 14 / 48

  14. Local statistics Let W ⊂ Z be finite. ( W stands for window ) Define φ W : X → A W = A × A × . . . × A by � �� � W � � φ W ( x ) := φ ( T w x ) w ∈ W . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 14 / 48

  15. Local statistics Let W ⊂ Z be finite. ( W stands for window ) Define φ W : X → A W = A × A × . . . × A by � �� � W � � φ W ( x ) := φ ( T w x ) w ∈ W . ∗ µ is a measure on A W that encodes the local statistics . φ W Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 14 / 48

  16. Sequences Let ψ : { 1 , . . . , n } → A be a map. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 15 / 48

  17. Sequences Let ψ : { 1 , . . . , n } → A be a map. ψ W : { 1 , . . . , n } → A W is defined by � � ψ W ( j ) = ψ ( j + w ) w ∈ W . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 15 / 48

  18. Sequences Let ψ : { 1 , . . . , n } → A be a map. ψ W : { 1 , . . . , n } → A W is defined by � � ψ W ( j ) = ψ ( j + w ) w ∈ W . ∈ { 1 , . . . , n } ) (define it arbitrarily if j + w / Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 15 / 48

  19. Sequences Let ψ : { 1 , . . . , n } → A be a map. ψ W : { 1 , . . . , n } → A W is defined by � � ψ W ( j ) = ψ ( j + w ) w ∈ W . ∈ { 1 , . . . , n } ) (define it arbitrarily if j + w / Let u be the uniform measure on { 1 , . . . , n } . ψ W ∗ u is a measure on A W that encodes the local statistics of the sequence ( ψ ( 1 ) , . . . , ψ ( n )) ∈ A n . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 15 / 48

  20. Entropy as a growth rate Let d W ( φ, ψ ) be the l 1 -distance between φ W ∗ µ and ψ W ∗ u : Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 16 / 48

  21. Entropy as a growth rate Let d W ( φ, ψ ) be the l 1 -distance between φ W ∗ µ and ψ W ∗ u : � � � � φ W ∗ µ ( α ) − ψ W � � d W ( φ, ψ ) := ∗ u ( α ) � . α ∈ A W Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 16 / 48

  22. Entropy as a growth rate Let d W ( φ, ψ ) be the l 1 -distance between φ W ∗ µ and ψ W ∗ u : � � � � φ W ∗ µ ( α ) − ψ W � � d W ( φ, ψ ) := ∗ u ( α ) � . α ∈ A W Theorem � �� 1 � � � h ( T , φ ) = inf W ⊂ Z inf ǫ> 0 lim n log ψ : { 1 , . . . , n } → A : d W ( φ, ψ ) < ǫ � . � n →∞ Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 16 / 48

  23. Sofic Groups A sofic approximation to G is a sequence Σ = { σ i } ∞ i = 1 of maps σ i : G → Sym ( m i ) such that for every f , g ∈ G , 1 1 lim |{ 1 ≤ p ≤ m i : σ i ( g ) σ i ( f ) p = σ i ( gf ) p }| = 1 m i i →∞ for every f � = g ∈ G , 2 1 |{ 1 ≤ p ≤ m i : σ i ( g ) p � = σ i ( f ) p }| = 1 lim m i i →∞ lim i →∞ m i = + ∞ . 3 Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 17 / 48

  24. Sofic Groups A sofic approximation to G is a sequence Σ = { σ i } ∞ i = 1 of maps σ i : G → Sym ( m i ) such that for every f , g ∈ G , 1 1 lim |{ 1 ≤ p ≤ m i : σ i ( g ) σ i ( f ) p = σ i ( gf ) p }| = 1 m i i →∞ for every f � = g ∈ G , 2 1 |{ 1 ≤ p ≤ m i : σ i ( g ) p � = σ i ( f ) p }| = 1 lim m i i →∞ lim i →∞ m i = + ∞ . 3 G is sofic if there exists a sofic approximation to G . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 17 / 48

  25. Sofic Groups A sofic approximation to G is a sequence Σ = { σ i } ∞ i = 1 of maps σ i : G → Sym ( m i ) such that for every f , g ∈ G , 1 1 lim |{ 1 ≤ p ≤ m i : σ i ( g ) σ i ( f ) p = σ i ( gf ) p }| = 1 m i i →∞ for every f � = g ∈ G , 2 1 |{ 1 ≤ p ≤ m i : σ i ( g ) p � = σ i ( f ) p }| = 1 lim m i i →∞ lim i →∞ m i = + ∞ . 3 G is sofic if there exists a sofic approximation to G . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 17 / 48

  26. Sofic Groups Residually finite groups are sofic. Hence all linear groups are sofic. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 18 / 48

  27. Sofic Groups Residually finite groups are sofic. Hence all linear groups are sofic. Amenable groups are sofic. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 18 / 48

  28. Sofic Groups Residually finite groups are sofic. Hence all linear groups are sofic. Amenable groups are sofic. (Gromov 1999, Weiss 2000, Elek-Szabo 2005) If G is sofic then G satisfies Gottshalk’s surjunctivity conjecture, Connes embedding conjecture, the Determinant conjecture, Kaplansky’s direct finiteness conjecture. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 18 / 48

  29. Sofic Groups Residually finite groups are sofic. Hence all linear groups are sofic. Amenable groups are sofic. (Gromov 1999, Weiss 2000, Elek-Szabo 2005) If G is sofic then G satisfies Gottshalk’s surjunctivity conjecture, Connes embedding conjecture, the Determinant conjecture, Kaplansky’s direct finiteness conjecture. Open : Is every countable group sofic? Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 18 / 48

  30. Entropy for Sofic Groups Let G � ( X , µ ) be a system, Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 19 / 48

  31. Entropy for Sofic Groups Let G � ( X , µ ) be a system, Σ = { σ i } be a sofic approximation to G where σ i : G → Sym ( m i ) , Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 19 / 48

  32. Entropy for Sofic Groups Let G � ( X , µ ) be a system, Σ = { σ i } be a sofic approximation to G where σ i : G → Sym ( m i ) , φ : X → A be a measurable map into a finite set. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 19 / 48

  33. Entropy for Sofic Groups Let G � ( X , µ ) be a system, Σ = { σ i } be a sofic approximation to G where σ i : G → Sym ( m i ) , φ : X → A be a measurable map into a finite set. The idea: Count the number of observables ψ : { 1 , . . . , m i } → A so that ( G , [ m i ] , u i , ψ ) approximates ( G , X , µ, φ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 19 / 48

  34. Approximating � �� If W ⊂ G is finite, let φ W : X → A W be the map φ W ( x ) := � φ wx w ∈ W . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 20 / 48

  35. Approximating � �� If W ⊂ G is finite, let φ W : X → A W be the map φ W ( x ) := � φ wx w ∈ W . Given ψ : { 1 , . . . , m i } → A , ψ W : { 1 , . . . , m i } → A W is the map � �� � ψ W ( j ) := ψ σ ( w ) j w ∈ W . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 20 / 48

  36. Approximating � �� If W ⊂ G is finite, let φ W : X → A W be the map φ W ( x ) := � φ wx w ∈ W . Given ψ : { 1 , . . . , m i } → A , ψ W : { 1 , . . . , m i } → A W is the map � �� � ψ W ( j ) := ψ σ ( w ) j w ∈ W . Let d W ( φ, ψ ) be the l 1 -distance between φ W ∗ µ and ψ W ∗ u . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 20 / 48

  37. Entropy for sofic groups � � � { ψ : { 1 , . . . , m i } → A : d W ( φ, ψ ) ≤ ǫ } log � � � h Σ , φ := inf W ⊂ G inf ǫ> 0 lim sup . m i i →∞ Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 21 / 48

  38. Entropy for sofic groups � � � { ψ : { 1 , . . . , m i } → A : d W ( φ, ψ ) ≤ ǫ } log � � � h Σ , φ := inf W ⊂ G inf ǫ> 0 lim sup . m i i →∞ Theorem (L.B. ’09) � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 21 / 48

  39. Entropy for sofic groups � � � { ψ : { 1 , . . . , m i } → A : d W ( φ, ψ ) ≤ ǫ } log � � � h Σ , φ := inf W ⊂ G inf ǫ> 0 lim sup . m i i →∞ Theorem (L.B. ’09) � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Theorem (L.B. ’10, Kerr-Li ’10) � � If G is amenable then h Σ , G , X , µ is the classical entropy of ( G , X , µ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 21 / 48

  40. Entropy for sofic groups � � � { ψ : { 1 , . . . , m i } → A : d W ( φ, ψ ) ≤ ǫ } log � � � h Σ , φ := inf W ⊂ G inf ǫ> 0 lim sup . m i i →∞ Theorem (L.B. ’09) � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Theorem (L.B. ’10, Kerr-Li ’10) � � If G is amenable then h Σ , G , X , µ is the classical entropy of ( G , X , µ ) . Theorem (L.B. ’09) � Σ , G , K G , κ G � h = H ( K , κ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 21 / 48

  41. Proof sketch Theorem � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 22 / 48

  42. Proof sketch Theorem � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Two observables φ : X → A , ψ : X → B are equivalent if the partitions { φ − 1 ( a ) : a ∈ A } , { ψ − 1 ( b ) : b ∈ B } agree up to measure zero. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 22 / 48

  43. Proof sketch Theorem � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Two observables φ : X → A , ψ : X → B are equivalent if the partitions { φ − 1 ( a ) : a ∈ A } , { ψ − 1 ( b ) : b ∈ B } agree up to measure zero. Let P be the set of all equivalence classes of observables φ with H ( φ ) < ∞ . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 22 / 48

  44. Proof sketch Theorem � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Two observables φ : X → A , ψ : X → B are equivalent if the partitions { φ − 1 ( a ) : a ∈ A } , { ψ − 1 ( b ) : b ∈ B } agree up to measure zero. Let P be the set of all equivalence classes of observables φ with H ( φ ) < ∞ . Definition (Rohlin distance) d ( φ, ψ ) := 2 H ( φ ∨ ψ ) − H ( ψ ) − H ( φ ) = H ( φ | ψ ) + H ( ψ | φ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 22 / 48

  45. Proof sketch Theorem � If φ 1 and φ 2 are generating then h Σ , φ 1 ) = h (Σ , φ 2 ) . So let h (Σ , G , X , µ ) be this common number. Two observables φ : X → A , ψ : X → B are equivalent if the partitions { φ − 1 ( a ) : a ∈ A } , { ψ − 1 ( b ) : b ∈ B } agree up to measure zero. Let P be the set of all equivalence classes of observables φ with H ( φ ) < ∞ . Definition (Rohlin distance) d ( φ, ψ ) := 2 H ( φ ∨ ψ ) − H ( ψ ) − H ( φ ) = H ( φ | ψ ) + H ( ψ | φ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 22 / 48

  46. Proof sketch Definition φ refines ψ if H ( ψ ∨ φ ) = H ( φ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 23 / 48

  47. Proof sketch Definition φ refines ψ if H ( ψ ∨ φ ) = H ( φ ) . Definition φ and ψ are combinatorially equivalent if there exists finite subsets K , L ⊂ G such that φ K refines ψ and ψ L refines φ . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 23 / 48

  48. Proof sketch Theorem If φ is a generator then its combinatorial equivalence class is dense in the space of all generating observables. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 24 / 48

  49. Proof sketch Theorem If φ is a generator then its combinatorial equivalence class is dense in the space of all generating observables. Lemma h (Σ , φ ) is upper semi-continuous in φ . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 24 / 48

  50. Proof sketch Theorem If φ is a generator then its combinatorial equivalence class is dense in the space of all generating observables. Lemma h (Σ , φ ) is upper semi-continuous in φ . Theorem If φ and ψ are combinatorially equivalent then h (Σ , φ ) = h (Σ , ψ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 24 / 48

  51. Proof sketch Definition φ is a simple splitting of ψ if there exists f ∈ G and an observable ω refined by ψ such that φ = ψ ∨ ω ◦ f . φ is a splitting of ψ if it can be obtained from ψ by a sequence of simple splittings. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 25 / 48

  52. Proof sketch Definition φ is a simple splitting of ψ if there exists f ∈ G and an observable ω refined by ψ such that φ = ψ ∨ ω ◦ f . φ is a splitting of ψ if it can be obtained from ψ by a sequence of simple splittings. Lemma If φ and ψ are equivalent then there exists an observable ω that is a splitting of both φ and ψ . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 25 / 48

  53. Proof sketch Definition φ is a simple splitting of ψ if there exists f ∈ G and an observable ω refined by ψ such that φ = ψ ∨ ω ◦ f . φ is a splitting of ψ if it can be obtained from ψ by a sequence of simple splittings. Lemma If φ and ψ are equivalent then there exists an observable ω that is a splitting of both φ and ψ . Proposition If φ is a simple splitting of ψ then h (Σ , φ ) = h (Σ , ψ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 25 / 48

  54. Applications: von Neumann algebras Definition G 1 � ( X 1 , µ 1 ) and G 2 � ( X 2 , µ 2 ) are von Neumann equivalent (vNE) if L ∞ ( X 1 , µ 1 ) ⋊ G 1 ∼ = L ∞ ( X 2 , µ 2 ) ⋊ G 2 . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 26 / 48

  55. Applications: von Neumann algebras Definition G 1 � ( X 1 , µ 1 ) and G 2 � ( X 2 , µ 2 ) are von Neumann equivalent (vNE) if L ∞ ( X 1 , µ 1 ) ⋊ G 1 ∼ = L ∞ ( X 2 , µ 2 ) ⋊ G 2 . Theorem (Popa 2006) If G is an ICC property (T) group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 26 / 48

  56. Applications: von Neumann algebras Definition G 1 � ( X 1 , µ 1 ) and G 2 � ( X 2 , µ 2 ) are von Neumann equivalent (vNE) if L ∞ ( X 1 , µ 1 ) ⋊ G 1 ∼ = L ∞ ( X 2 , µ 2 ) ⋊ G 2 . Theorem (Popa 2006) If G is an ICC property (T) group then any two von Neumann equivalent Bernoulli shifts over G are isomorphic. Corollary If, in addition, G is sofic and Ornstein then Bernoulli shifts over G are classified up to vNE by base measure entropy. E.g., this occurs when G = PSL n ( Z ) for n > 2 . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 26 / 48

  57. Applications: orbit equivalence Definition G 1 � ( X 1 , µ 1 ) is orbit equivalent (OE) to G 2 � ( X 2 , µ 2 ) if there exists a measure-space isomorphism φ : X 1 → X 2 such that φ ( G 1 x ) = G 2 φ ( x ) for a.e. x ∈ X 1 . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 27 / 48

  58. Applications: orbit equivalence Definition G 1 � ( X 1 , µ 1 ) is orbit equivalent (OE) to G 2 � ( X 2 , µ 2 ) if there exists a measure-space isomorphism φ : X 1 → X 2 such that φ ( G 1 x ) = G 2 φ ( x ) for a.e. x ∈ X 1 . Theorem (Dye 1959, Ornstein-Weiss 1980) If G 1 and G 2 are amenable and infinite and their respective actions are ergodic and free then G 1 � ( X 1 , µ 1 ) is OE to G 2 � ( X 2 , µ 2 ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 27 / 48

  59. OE rigidity Theorem For the following groups, OE of Bernoulli shift implies conjugacy of Bernoulli shifts: property (T) groups with ICC (Popa 2007), mapping class groups with 3 g + n − 4 > 0 , ( g , n ) / ∈ { ( 1 , 2 ) , ( 2 , 0 ) } (Kida, 2008), direct products of infinite non-amenable groups with no finite normal subgroups (Popa, 2008). Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 28 / 48

  60. OE rigidity Theorem For the following groups, OE of Bernoulli shift implies conjugacy of Bernoulli shifts: property (T) groups with ICC (Popa 2007), mapping class groups with 3 g + n − 4 > 0 , ( g , n ) / ∈ { ( 1 , 2 ) , ( 2 , 0 ) } (Kida, 2008), direct products of infinite non-amenable groups with no finite normal subgroups (Popa, 2008). Corollary If G is as above then Bernoulli shifts over G are classified up to OE by base measure entropy. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 28 / 48

  61. Free Groups: a special case Let F = � s 1 , . . . , s r � . Let F act on ( X , µ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 29 / 48

  62. Free Groups: a special case Let F = � s 1 , . . . , s r � . Let F act on ( X , µ ) . Given an observable φ : X → A , define r � F ( φ ) := − ( 2 r − 1 ) H ( φ ) + H ( φ ∨ φ ◦ s i ); i = 1 � φ B ( e , n ) � f ( φ ) := inf n F . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 29 / 48

  63. Free Groups: a special case Let F = � s 1 , . . . , s r � . Let F act on ( X , µ ) . Given an observable φ : X → A , define r � F ( φ ) := − ( 2 r − 1 ) H ( φ ) + H ( φ ∨ φ ◦ s i ); i = 1 � φ B ( e , n ) � f ( φ ) := inf n F . Theorem If φ 1 and φ 2 are generating then f ( φ 1 ) = f ( φ 2 ) . So we may define f ( F , X , µ ) = f ( φ 1 ) . Moreover, f ( F , K F , κ F ) = H ( K , κ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 29 / 48

  64. Free Groups: a special case For each n ≥ 1, let σ n : F = � s 1 , . . . , s r � → Sym ( n ) be chosen uniformly at random. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 30 / 48

  65. Free Groups: a special case For each n ≥ 1, let σ n : F = � s 1 , . . . , s r � → Sym ( n ) be chosen uniformly at random. Define �� � � log E � { ψ : { 1 , . . . , n } → A : d W ( φ, ψ ) ≤ ǫ } � � � h ∗ φ := inf W inf ǫ> 0 lim sup . n n →∞ Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 30 / 48

  66. Free Groups: a special case For each n ≥ 1, let σ n : F = � s 1 , . . . , s r � → Sym ( n ) be chosen uniformly at random. Define �� � � log E � { ψ : { 1 , . . . , n } → A : d W ( φ, ψ ) ≤ ǫ } � � � h ∗ φ := inf W inf ǫ> 0 lim sup . n n →∞ Theorem � � h ∗ φ = f ( φ ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 30 / 48

  67. Some strange phenomena f is not monotone under factor maps. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 31 / 48

  68. Some strange phenomena f is not monotone under factor maps. f is not well defined if the system does not have a finite entropy generating observable. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 31 / 48

  69. Some strange phenomena f is not monotone under factor maps. f is not well defined if the system does not have a finite entropy generating observable. If µ = t µ 1 + ( 1 − t ) µ 2 where µ 1 and µ 2 are invariant and mutually singular then f ( µ, φ ) = tf ( µ 1 , φ ) + ( 1 − t ) f ( µ 2 , φ ) − ( r − 1 ) H ( t ) where H ( t ) = − t log ( t ) − ( 1 − t ) log ( 1 − t ) . Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 31 / 48

  70. Some strange phenomena f is not monotone under factor maps. f is not well defined if the system does not have a finite entropy generating observable. If µ = t µ 1 + ( 1 − t ) µ 2 where µ 1 and µ 2 are invariant and mutually singular then f ( µ, φ ) = tf ( µ 1 , φ ) + ( 1 − t ) f ( µ 2 , φ ) − ( r − 1 ) H ( t ) where H ( t ) = − t log ( t ) − ( 1 − t ) log ( 1 − t ) . f can take negative values. Lewis Bowen (Texas A&M) Entropy Theory for Sofic Group Actions 31 / 48

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend