sofic entropy theory
play

Sofic entropy theory Lewis Bowen Logic, Dynamics and their - PowerPoint PPT Presentation

Sofic entropy theory Lewis Bowen Logic, Dynamics and their Interactions with a celebration of the work of Dan Mauldin University of North Texas June 2012 Lewis Bowen (Texas A&M) Sofic entropy theory 1 / 29 Group actions Let G be a


  1. Sofic entropy theory Lewis Bowen Logic, Dynamics and their Interactions with a celebration of the work of Dan Mauldin University of North Texas June 2012 Lewis Bowen (Texas A&M) Sofic entropy theory 1 / 29

  2. Group actions Let G be a countable discrete group. Lewis Bowen (Texas A&M) Sofic entropy theory 2 / 29

  3. Group actions Let G be a countable discrete group. Let X be a set with a measure µ satisfying µ ( X ) = 1. Lewis Bowen (Texas A&M) Sofic entropy theory 2 / 29

  4. Group actions Let G be a countable discrete group. Let X be a set with a measure µ satisfying µ ( X ) = 1. Let T : G → Aut ( X , µ ) be a homomorphism. Lewis Bowen (Texas A&M) Sofic entropy theory 2 / 29

  5. Group actions Let G be a countable discrete group. Let X be a set with a measure µ satisfying µ ( X ) = 1. Let T : G → Aut ( X , µ ) be a homomorphism. T is a (probability-measure-preserving) action of G . Lewis Bowen (Texas A&M) Sofic entropy theory 2 / 29

  6. Group actions Let G be a countable discrete group. Let X be a set with a measure µ satisfying µ ( X ) = 1. Let T : G → Aut ( X , µ ) be a homomorphism. T is a (probability-measure-preserving) action of G . Two actions T 1 : G → Aut ( X 1 , µ 1 ) , T 2 : G → Aut ( X 2 , µ 2 ) are isomorphic if there exists a measure-space isomorphism φ : X 1 → X 2 with φ ( T 1 ( g ) x ) = T 2 ( g ) φ ( x ) for a.e. x ∈ X 1 , for every g ∈ G . Lewis Bowen (Texas A&M) Sofic entropy theory 2 / 29

  7. Group actions Let G be a countable discrete group. Let X be a set with a measure µ satisfying µ ( X ) = 1. Let T : G → Aut ( X , µ ) be a homomorphism. T is a (probability-measure-preserving) action of G . Two actions T 1 : G → Aut ( X 1 , µ 1 ) , T 2 : G → Aut ( X 2 , µ 2 ) are isomorphic if there exists a measure-space isomorphism φ : X 1 → X 2 with φ ( T 1 ( g ) x ) = T 2 ( g ) φ ( x ) for a.e. x ∈ X 1 , for every g ∈ G . Main Problem: Classify actions of G up to isomorphism. Lewis Bowen (Texas A&M) Sofic entropy theory 2 / 29

  8. Bernoulli shifts Let ( K , κ ) be a probability space. Lewis Bowen (Texas A&M) Sofic entropy theory 3 / 29

  9. Bernoulli shifts Let ( K , κ ) be a probability space. G acts on K G := { x : G → K } by shifting: ( gx )( f ) = x ( g − 1 f ) ∀ x ∈ K G , g , f ∈ G . Lewis Bowen (Texas A&M) Sofic entropy theory 3 / 29

  10. Bernoulli shifts Let ( K , κ ) be a probability space. G acts on K G := { x : G → K } by shifting: ( gx )( f ) = x ( g − 1 f ) ∀ x ∈ K G , g , f ∈ G . The action G � ( K G , κ G ) = ( K , κ ) G is the Bernoulli shift over G with base measure κ . Lewis Bowen (Texas A&M) Sofic entropy theory 3 / 29

  11. Bernoulli shifts Let ( K , κ ) be a probability space. G acts on K G := { x : G → K } by shifting: ( gx )( f ) = x ( g − 1 f ) ∀ x ∈ K G , g , f ∈ G . The action G � ( K G , κ G ) = ( K , κ ) G is the Bernoulli shift over G with base measure κ . � � H ( K , κ ) := − � k ∈ K ′ κ ( k ) log κ ( k ) if κ is supported on a countable set K ′ ⊂ K . Otherwise, H ( K , κ ) := + ∞ . Lewis Bowen (Texas A&M) Sofic entropy theory 3 / 29

  12. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  13. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  14. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  15. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  16. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) ⇐ = G = Z , Ornstein (1970) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  17. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) ⇐ = G = Z , Ornstein (1970) ⇐ = G ⊃ Ornstein subgroup, Stepin (1975) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  18. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) ⇐ = G = Z , Ornstein (1970) ⇐ = G ⊃ Ornstein subgroup, Stepin (1975) ⇐ | G | = ∞ & G amenable, = Ornstein-Weiss (1987) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  19. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) ⇐ = G = Z , Ornstein (1970) ⇐ = G ⊃ Ornstein subgroup, Stepin (1975) ⇐ | G | = ∞ & G amenable, = Ornstein-Weiss (1987) ⇐ = | G | = ∞ , ( K , κ ) , ( L , λ ) not 2-atom spaces, B. (2011) Lewis Bowen (Texas A&M) Sofic entropy theory 4 / 29

  20. Classification of Bernoulli Shifts G � ( K , κ ) G ∼ ? = G � ( L , λ ) G ⇐ ⇒ H ( K , κ ) = H ( L , λ ) = ⇒ G = Z , Kolmogorov (1958) ⇒ = G amenable, folk theorem (1970s) = ⇒ G sofic, B. (2010) ⇐ = G = Z , Ornstein (1970) ⇐ G ⊃ Ornstein subgroup, Stepin (1975) = ⇐ = | G | = ∞ & G amenable, Ornstein-Weiss (1987) ⇐ = | G | = ∞ , ( K , κ ) , ( L , λ ) not 2-atom spaces, B. (2011) Lewis Bowen (Texas A&M) Sofic entropy theory 5 / 29

  21. Factor maps Lewis Bowen (Texas A&M) Sofic entropy theory 6 / 29

  22. Factor maps Definition Let G � ( X , µ ) , G � ( Y , ν ) be two systems and φ : X → Y a measurable map with φ ∗ µ = ν , φ ( gx ) = g φ ( x ) for a.e. x ∈ X and all g ∈ G . Then φ is a factor map from G � ( X , µ ) to G � ( Y , ν ) . Lewis Bowen (Texas A&M) Sofic entropy theory 6 / 29

  23. Factor maps Definition Let G � ( X , µ ) , G � ( Y , ν ) be two systems and φ : X → Y a measurable map with φ ∗ µ = ν , φ ( gx ) = g φ ( x ) for a.e. x ∈ X and all g ∈ G . Then φ is a factor map from G � ( X , µ ) to G � ( Y , ν ) . Question: which Bernoulli shifts factor onto which Bernoulli shifts? Lewis Bowen (Texas A&M) Sofic entropy theory 6 / 29

  24. Factor maps Definition Let G � ( X , µ ) , G � ( Y , ν ) be two systems and φ : X → Y a measurable map with φ ∗ µ = ν , φ ( gx ) = g φ ( x ) for a.e. x ∈ X and all g ∈ G . Then φ is a factor map from G � ( X , µ ) to G � ( Y , ν ) . Question: which Bernoulli shifts factor onto which Bernoulli shifts? Theorem (Sinai 1960s, Ornstein-Weiss 1980) If G is amenable then G � ( K , κ ) G factors onto G � ( L , λ ) G if and only if H ( K , κ ) ≥ H ( L , λ ) . Lewis Bowen (Texas A&M) Sofic entropy theory 6 / 29

  25. Factor maps Definition Let G � ( X , µ ) , G � ( Y , ν ) be two systems and φ : X → Y a measurable map with φ ∗ µ = ν , φ ( gx ) = g φ ( x ) for a.e. x ∈ X and all g ∈ G . Then φ is a factor map from G � ( X , µ ) to G � ( Y , ν ) . Question: which Bernoulli shifts factor onto which Bernoulli shifts? Theorem (Sinai 1960s, Ornstein-Weiss 1980) If G is amenable then G � ( K , κ ) G factors onto G � ( L , λ ) G if and only if H ( K , κ ) ≥ H ( L , λ ) . G amenable ⇒ h ( G � ( Z / n Z , u n ) G ) = log ( n ) (the full n -shift). So the full 2-shift over G cannot factor onto the full 4-shift over G . Lewis Bowen (Texas A&M) Sofic entropy theory 6 / 29

  26. The Ornstein-Weiss Example Theorem (Ornstein-Weiss, 1987) If F = � a , b � is the rank 2 free group then the full 2 -shift over F factors onto the full 4 -shift over F . Lewis Bowen (Texas A&M) Sofic entropy theory 7 / 29

  27. The Ornstein-Weiss Example Theorem (Ornstein-Weiss, 1987) If F = � a , b � is the rank 2 free group then the full 2 -shift over F factors onto the full 4 -shift over F . Define φ : ( Z / 2 Z ) F → ( Z / 2 Z × Z / 2 Z ) F by Lewis Bowen (Texas A&M) Sofic entropy theory 7 / 29

  28. The Ornstein-Weiss Example Theorem (Ornstein-Weiss, 1987) If F = � a , b � is the rank 2 free group then the full 2 -shift over F factors onto the full 4 -shift over F . Define φ : ( Z / 2 Z ) F → ( Z / 2 Z × Z / 2 Z ) F by � � φ ( x )( g ) = x ( g ) + x ( ga ) , x ( g ) + x ( gb ) . Theorem (B. 2011) If G contains a subgroup isomorphic to F then every nontrivial Bernoulli shift over G factors onto every other Bernoulli shift over G. Lewis Bowen (Texas A&M) Sofic entropy theory 7 / 29

  29. Factors between Bernoulli shifts Theorem (Gaboriau-Lyons, 2009) For every non-amenable group G there is some space ( K , κ ) with H ( K , κ ) < ∞ and an essentially free action F� ( K , κ ) G with F -orbits contained in the G-orbits. Lewis Bowen (Texas A&M) Sofic entropy theory 8 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend