actions of compact quantum groups v
play

Actions of Compact Quantum Groups V Free and homogeneous actions I - PowerPoint PPT Presentation

Actions of Compact Quantum Groups V Free and homogeneous actions I Kenny De Commer (VUB, Brussels, Belgium) Free actions Homogeneous actions Outline Free actions Homogeneous actions Free actions Homogeneous actions Free actions Definition


  1. Actions of Compact Quantum Groups V Free and homogeneous actions I Kenny De Commer (VUB, Brussels, Belgium)

  2. Free actions Homogeneous actions Outline Free actions Homogeneous actions

  3. Free actions Homogeneous actions Free actions Definition α X � G free if ∀ x ∈ X, G x = { g ∈ G | xg = x } = { e G } .

  4. Free actions Homogeneous actions A C ∗ -algebraic characterisation Lemma α X � G free iff [( C 0 ( X ) ⊗ 1 G ) α ( C 0 ( X ))] = C 0 ( X ) ⊗ C ( G ) . Proof. α free iff Can : X × G �→ X × X, ( x, g ) �→ ( x, xg ) injective iff Can : C 0 ( X ) ⊗ C 0 ( X ) → C 0 ( X ) ⊗ C ( G ) , F = f ⊗ h �→ Can( F ) = ( f ⊗ 1 G ) α ( h ) , ( x, g ) �→ F ( x, xg ) surjective.

  5. Free actions Homogeneous actions Freeness for compact quantum group actions Definition (Ellwood) α Let X � G . Then α free if [( C 0 ( X ) ⊗ 1 G ) α ( C 0 ( X ))] = C 0 ( X ) ⊗ C ( G ) .

  6. Free actions Homogeneous actions C ∗ -correspondences Definition C 0 ( X ) - C 0 ( Y ) -correspondence: ◮ right Hilbert C 0 ( Y ) -module Γ( E ) , ◮ non-degenerate ∗ -representation λ : C 0 ( X ) → L (Γ( E )) .

  7. Free actions Homogeneous actions Interior tensor product Definition (Interior tensor product) Assume ◮ (Γ( E ) , λ ) is C 0 ( X ) - C 0 ( Y ) correspondence. ◮ (Γ( F ) , τ ) is C 0 ( Y ) - C 0 ( Z ) correspondence. Then C 0 ( X ) - C 0 ( Z ) correspondence (Γ( E ) C 0 ( Y ) Γ( F ) , λ ⊗ C 0 ( Y ) id) : ⊗ separation-completion of Γ( E ) ⊗ alg Γ( F ) , � s ⊗ u, t ⊗ v � = � u, τ ( � s, t � ) v � .

  8. Free actions Homogeneous actions The Galois isometry Lemma α Let X � G . Then ∃ isometry, Galois (or canonical) isometry, G α : L 2 C 0 ( Y ) L 2 Y ( X ) → L 2 Y ( X ) ⊗ L 2 ( G ) , Y ( X ) ⊗ a ⊗ b �→ α ( a )( b ⊗ 1 G ) . Proof. � α ( c )( d ⊗ 1) , α ( a )( b ⊗ 1) � ( E Y ⊗ ϕ )(( d ∗ ⊗ 1) α ( c ∗ a )(( b ⊗ 1)) = E Y ( d ∗ E Y ( c ∗ a ) b ) = = � c ⊗ d, a ⊗ b � .

  9. Free actions Homogeneous actions What’s Galois got to do with it? Theorem (Chase-Harrison-Rosenberg) Let ◮ E ⊆ F finite field extension, ◮ G = Aut E ( F ) . Then ◮ H = Map( G, E ) Hopf algebra over E , ◮ Hopf algebraic coaction α : F → F ⊗ E H, α ( f )( g ) = α g ( f ) , and E ⊆ F Galois if and only if the following map is bijective, F ⊗ E F → F ⊗ E H, a ⊗ b �→ α ( a )( b ⊗ 1) .

  10. Free actions Homogeneous actions Unitarity of the Galois map Theorem (DC-Yamashita; Baum-DC-Hajac) α Let X � G . The following are equivalent. 1. The action is free. 2. The Galois map is unitary. ∼ = → K ( L 2 3. C 0 ( X ⋊ G ) Y ( X )) . Remark: Last condition: ‘saturatedness’ (Rieffel)

  11. Free actions Homogeneous actions Example: Action by compact quantum subgroup Example Let H ⊆ G compact quantum subgroup: π : C ( G ) ։ C ( H ) , ( π ⊗ π ) ◦ ∆ G = ∆ H ◦ π. Then free action α = (id ⊗ π ) ◦ ∆ : C ( G ) → C ( G ) ⊗ C ( H ) . Proof. Exercise.

  12. Free actions Homogeneous actions Example: free action on smash product Lemma Let X � � G . Then ( X ⋊ � G ) � G free. Proof. [ α ( C 0 ( X ⋊ � G ))( C 0 ( X ⋊ � α ( O ( X ⋊ � G ))( O ( X ⋊ � G ) ⊗ 1 G )] ⊇ G ) ⊗ 1 G ) ⊇ ( O ( X ) ⊗ 1 G )∆( O ( G ))( O ( G ) O ( X ) ⊗ 1 G ) = O ( X ) O ( G ) O ( X ) ⊗ O ( G ) O ( X ⋊ � = G ) ⊗ O ( G ) . Corollary (Takesaki-Takai duality) G ⋊ G ) ∼ C 0 ( X ⋊ � = B 0 ( L 2 ( G )) ⊗ C 0 ( X ) (since L 2 X ( X ⋊ � G ) = L 2 ( G ) ⊗ C 0 ( X ) ).

  13. Free actions Homogeneous actions Homogeneous actions Definition α X � G homogeneous (or ergodic) if α ( x ) = x ⊗ 1 G ↔ x ∈ C 1 X . ⇒ C ( X ) unital. Lemma α If X � G homogeneous, then α transitive (in the ordinary sense). Proof. C ( X ) G = C ( X/G ) .

  14. Free actions Homogeneous actions Homogeneity and reduced and universal actions Lemma α If X � G homogeneous, then α u and α red homogeneous. Proof. Y = X / G = X u / G u = X red / G red .

  15. Free actions Homogeneous actions Associated von Neumann algebra Definition α Let X � G homogeneous. Then invariant state ϕ X on C ( X ) , ∀ a ∈ C 0 ( X ) , ϕ X ( a )1 X = (id ⊗ ϕ ) α ( a ) . Lemma α Let X � G homogeneous. ◮ ϕ X is invariant: ∀ a ∈ C ( X ) , ( ϕ X ⊗ id G ) α ( a ) = ϕ X ( a )1 G . ◮ With L ∞ ( X ) = C ( X red ) ′′ ⊆ B ( L 2 ( X , ϕ X )) , normal coassociative ∗ -homomorphism α vN : L ∞ ( X ) → L ∞ ( X ) ⊗ L ∞ ( G ) .

  16. Free actions Homogeneous actions Actions of quotient type Definition (Podle´ s) α Let X � G . One calls α of quotient type if ∃ H ⊆ G and θ : C ( X ) ∼ = C ( H \ G ) = { f ∈ C ( G ) | ( π ⊗ id)∆( f ) = 1 H ⊗ f } such that ( θ ⊗ id) ◦ α = ∆ ◦ θ. Remarks: ◮ Quotient type ⇒ Homogeneous. ◮ G, X classical: Homogeneous ⇒ Quotient type. ◮ In general: Homogeneous � Quotient type.

  17. Free actions Homogeneous actions Example: Standard Podle´ s sphere Definition For q ∈ [ − 1 , 1] \ { 0 } : C ∗ -algebra C ( SU q (2)) as � u 11 � � a � − qb ∗ u 12 C ∗ ( a, b | U = = unitary ) u 21 u 22 b a ∗ is CQG for ‘matrix comultiplication’ ∆( u ij ) = u i 1 ⊗ u 1 j + u i 2 ⊗ u 2 j . Lemma S 1 ⊆ SU q (2) by � a � � z � − qb ∗ 0 → . b a ∗ 0 z ¯ Definition s sphere S 2 q = S 1 \ SU q (2) . Standard Podle´

  18. Free actions Homogeneous actions Concrete representation standard Podle´ s sphere Lemma C ( S 2 q ) generated by X = ab, Z = qb ∗ b and Y = b ∗ a ∗ . Lemma C ( S 2 q ) universal C ∗ -algebra generated by X, Y, Z s.t. ◮ X ∗ = Y , ◮ ◮ Z ∗ = Z , ◮ XZ = q 2 ZX , ◮ ◮ Y Z = q − 2 ZY , ◮ Y X = q − 1 Z − q − 2 Z 2 , ◮ Z − q 2 Z 2 . ◮ XY = q Remark: For q = 1 , | X | 2 + ( Z − 1 2 ) 2 = 1 4 .

  19. Free actions Homogeneous actions Embeddable actions Definition (Podle´ s) α � G . One calls α embeddable if ∃ faithful ∗ -homomorphism Let X θ : C ( X ) ֒ → C ( G ) such that ( θ ⊗ id) ◦ α = ∆ ◦ θ. Remark: ◮ Embeddable ⇒ Homogeneous. ◮ Quotient type ⇒ Embeddable. ◮ Embeddable � Quotient type (e.g. non-standard Podle´ s spheres) ◮ Homogeneous � Embeddable.

  20. Free actions Homogeneous actions Non-embeddable actions Example Let π irreducible left G -representation. ξη ∗ → δ π ( ξ ) δ π ( η ) ∗ Ad π : B ( H π ) → B ( H π ) ⊗ C ( G ) , homogeneous, but not embeddable for dim( H π ) ≥ 2

  21. Free actions Homogeneous actions Homogeneous actions with classical point Lemma α X � G homogeneous. TFAE: 1. α red is embeddable. 2. C ( X u ) has a character.

  22. Free actions Homogeneous actions Proof 1 . ⇒ 2 . θ : C ( X red ) → C ( G red ) equivariant, so θ alg : O G ( X ) → O ( G ) ⇒ θ u : C ( X u ) → C ( G u ) . Then ǫ ◦ θ u character. ◮ If χ character, then equivariant ∗ -homomorphism 2 . ⇒ 1 . θ u : C ( X u ) → C ( G u ) , a �→ ( χ ⊗ id) ◦ α u . ◮ Hence equivariant ∗ -homomorphism θ alg : O G ( X ) → O ( G ) . ◮ Then ϕ ( θ alg ( a ) ∗ θ alg ( a )) = χ ( E Y ( a ∗ a )) . But, by homogeneity, E Y values in C 1 X , so E Y ( a ∗ a ) = χ ( E Y ( a ∗ a ))1 X . ◮ Hence θ r : C ( X red ) ֒ → C ( G red ) since E Y faithful on C ( X red ) .

  23. Free actions Homogeneous actions Boca’s theorems Theorem (Boca) If X � α G homogeneous, then all C ( X ) π finite dimensional. In fact, Boca gives concrete estimate in terms of ‘quantum multiplicity’. Combined with Takesaki-Takai duality: Theorem (Boca) α X � G homogeneous ⇒ ∃ set I and Hilbert spaces H i , C 0 ( X ⋊ G ) ∼ = ⊕ i ∈ I B 0 ( H i )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend