actions of compact quantum groups i
play

Actions of Compact Quantum Groups I Definition Kenny De Commer - PowerPoint PPT Presentation

Actions of Compact Quantum Groups I Definition Kenny De Commer (VUB, Brussels, Belgium) CQG Compact actions Non-compact actions Course material Material that will be treated: Actions and coactions of compact quantum groups. Actions on


  1. Actions of Compact Quantum Groups I Definition Kenny De Commer (VUB, Brussels, Belgium)

  2. CQG Compact actions Non-compact actions Course material Material that will be treated: ◮ Actions and coactions of compact quantum groups. ◮ Actions on C ∗ -algebras and Hilbert modules. ◮ Crossed products. ◮ Free actions, ergodic actions, and their interrelationship.

  3. CQG Compact actions Non-compact actions Outline Lecture I Compact quantum groups Actions of compact quantum groups on compact quantum spaces Actions on non-compact quantum spaces

  4. CQG Compact actions Non-compact actions Compact quantum groups Definition (Woronowicz) Compact quantum group (CQG) G : ◮ unital C ∗ -algebra C ( G ) , ◮ unital ∗ -homomorphism, comultiplication ∆ : C ( G ) → C ( G ) ⊗ C ( G ) s.t. ◮ coassociativity: (∆ ⊗ id) ◦ ∆ = (id ⊗ ∆) ◦ ∆ , ◮ cancellation: [( C ( G ) ⊗ 1 G )∆( C ( G ))] = [∆( C ( G ))(1 G ⊗ C ( G ))] = C ( G ) ⊗ C ( G ) . Here: [ S ] = closed linear span of S (in some Banach space) .

  5. CQG Compact actions Non-compact actions Classical CQG Lemma X, Y compact Hausdorff: C ( X ) ⊗ C ( Y ) ∼ = C ( X × Y ) , ( a ⊗ b )( x, y ) = a ( x ) b ( y ) . Example G compact Hausdorff group ⇒ CQG ( C ( G ) , ∆) , ∆ : C ( G ) → C ( G ) ⊗ C ( G ) , f �→ (∆( f ) : ( g, h ) �→ f ( gh )) . Conversely: CQG G with C ( G ) commutative ⇓ G = Spec( C ( G )) compact Hausdorff group .

  6. CQG Compact actions Non-compact actions C ( G ) -corepresentations Definition Unitary C ( G ) -corepresentation: ◮ finite dimensional Hilbert space H , ◮ U ∈ B ( H ) ⊗ C ( G ) s.t. ◮ U unitary, ◮ (id ⊗ ∆)( U ) = U 12 U 13 , where U 12 = U ⊗ 1 etc. U ∈ B ( H ) ⊗ C ( G ) � δ : H → H ⊗ C ( G ) , ξ �→ U ( ξ ⊗ 1 G ) s.t. . . . ?

  7. CQG Compact actions Non-compact actions G -representations Definition G compact quantum group. (Continuous finite dimensional unitary left) G -representation π : ◮ finite dimensional Hilbert space H π , ◮ linear map δ π : H π → H π ⊗ C ( G ) s.t. ◮ right comodule: (id ⊗ ∆) ◦ δ π = ( δ π ⊗ id) ◦ δ π , ◮ isometric: δ π ( ξ ) ∗ δ π ( η ) = � ξ, η � 1 C ( G ) , ◮ density: [ δ π ( H )(1 ⊗ C ( G ))] = H ⊗ C ( G ) . ◮ Here H π ∼ = B ( C , H π ) , so ( ξ ⊗ a ) ∗ ( η ⊗ b ) = ξ ∗ η ⊗ a ∗ b ∼ = � ξ, η � a ∗ b. ◮ Density condition automatically satisfied. ◮ C ( G ) -corepresentations ↔ G -representations.

  8. CQG Compact actions Non-compact actions Classical representations Example Let G compact Hausdorff group. Then G -representations as compact quantum group � G -representations as compact group by δ π : H π → H π ⊗ C ( G ) ∼ = C ( G, H π ) � π : G × H π → H π , ( g, ξ ) �→ π ( g ) ξ = δ π ( ξ )( g ) .

  9. CQG Compact actions Non-compact actions The canonical Hopf ∗ -algebra Theorem (Woronowicz) Let O ( G ) = { ( ξ ∗ ⊗ id) δ π ( η ) | π G -representation, ξ, η ∈ H π } . Then ◮ ( O ( G ) , ∆) Hopf ∗ -algebra, ( O ( G ) , ∆ , ǫ, S ) , ◮ O ( G ) dense in C ( G ) , ◮ ( O ( G ) , ∆) unique dense Hopf ∗ -algebra, ◮ δ π : H → H ⊗ O ( G ) is O ( G ) -comodule: ◮ (id ⊗ ∆) ◦ δ π = ( δ π ⊗ id) ◦ δ π , ◮ (id H ⊗ ǫ ) δ π = id H .

  10. CQG Compact actions Non-compact actions Notation (Sweedler-Heynemann notation) h ∈ O ( G ) : ∆( h ) = h (1) ⊗ h (2) , (∆ ⊗ ι )∆( h ) = ∆ (2) ( h ) = h (1) ⊗ h (2) ⊗ h (3) , ... Example Let h ∈ O ( G ) . Then ∆( h (1) )(1 ⊗ S ( h (2) )) = h (1) ⊗ h (2) S ( h (3) ) = h (1) ⊗ ǫ ( h (2) )1 h ⊗ 1 . = Hence (Linear span) ∆( O ( G ))(1 ⊗ O ( G )) = O ( G ) ⊗ alg O ( G ) .

  11. CQG Compact actions Non-compact actions Universal C ∗ -algebra Lemma G CQG. ◮ Universal C ∗ -envelope C ( G u ) of O ( G ) exists. ◮ CQG G u by ∆ u : C ( G u ) → C ( G u ) ⊗ C ( G u ) . Definition G u universal CQG (associated to G ).

  12. CQG Compact actions Non-compact actions Right actions of compact quantum groups on C ∗ -algebras Definition (Podle´ s) Right action X � G : ◮ Compact quantum group G , ◮ C ∗ -algebra C ( X ) (with X ‘compact quantum space’), ◮ Unital ∗ -homomorphism, right coaction α : C ( X ) → C ( X ) ⊗ C ( G ) s.t. ◮ coaction property: ( α ⊗ id G ) ◦ α = (id X ⊗ ∆) ◦ α, ◮ density (Podle´ s condition): [ α ( C ( X ))(1 X ⊗ C ( G ))] = C ( X ) ⊗ C ( G ) .

  13. CQG Compact actions Non-compact actions Right translations Example ∆ Let G compact quantum group. Then G � G by ∆ : C ( G ) → C ( G ) ⊗ C ( G ) .

  14. CQG Compact actions Non-compact actions Half-classical case Lemma (All C ( G ) commutative) ◮ G compact Hausdorff group, ◮ C ∗ -algebra C ( X ) , α ◮ G � C ( X ) continuous action: ◮ ( g, a ) �→ α g ( a ) continuous, ◮ each α g ∗ -automorphism, ◮ α gh = α g ◦ α h , ◮ α e = id X , for e ∈ G identity element. ⇒ X � G , α : C ( X ) → C ( X ) ⊗ C ( G ) ∼ = C ( G, C ( X )) , a �→ ( α ( a ) : g �→ α g ( a )) .

  15. CQG Compact actions Non-compact actions Proof, Part I ◮ Forgetting group structure: ◮ Using partitions of unity on G : ∼ = ◮ C ( X ) ⊗ C ( G ) → C ( G, C ( X )) by a ⊗ f �→ ( g �→ f ( g ) a ) . ◮ C ( X ) ⊗ C ( G ) ⊗ C ( G ) ∼ = C ( G × G, C ( X )) , etc. α ◮ continuous G � C ( X ) by unital ∗ -endomorphisms ⇔ α : C ( X ) → C ( G, C ( X )) unital ∗ -homomorphism. ◮ ((id ⊗ ∆) α )( a )( g, h ) = (( α ⊗ id) α )( a )( g, h ) ⇔ α gh ( a ) = α g ( α h ( a )) . Conclusion: one-to-one correspondence between ◮ α with coaction property, and ◮ actions of a group on a C ∗ -algebra by endomorphisms. To do : Density ⇔ α e = id C ( X ) for e unit G .

  16. CQG Compact actions Non-compact actions Proof, Part II ◮ ∗ -homomorphism α : C ( X ) ⊗ C ( G ) → C ( X ) ⊗ C ( G ) , a ⊗ f �→ α ( a )(1 ⊗ f ) . � ◮ Density ⇔ � α surjective. ◮ On level of C ( G, C ( X )) ∼ = C ( X ) ⊗ C ( G ) : ∀ F ∈ C ( G, C ( X )) , α ( F )( g ) = α g ( F ( g )) . � α has inverse � ◮ Assume α e = id C ( X ) . Then � β , � β ( F )( g ) = α g − 1 ( F ( g )) . Hence range � α dense. ◮ If α e � = id C ( X ) ⇒ α e non-trivial idempotent ∗ -endomorphism. ◮ Put C ( X e ) = α e ( C ( X )) � = C ( X ) . ◮ ∀ g ∈ G : α g ( C ( X )) = α e ( α g ( C ( X ))) ⊆ C ( X e ) . ◮ ⇒ If a / ∈ C ( X e ) , then g �→ a not in range � α .

  17. CQG Compact actions Non-compact actions Classical Example (All C ( G ) and C ( X ) commutative) G compact Hausdorff group, X compact Hausdorff space, X � G continuous ⇒ G � C ( X ) , α g ( f )( x ) = f ( x · g ) . Example Consider sphere � S N − 1 = { z = ( z 1 , . . . , z N ) ∈ R N | z 2 i = 1 } . i Then S N − 1 � O ( N ) by ( z, g ) �→ zg.

  18. CQG Compact actions Non-compact actions Example: Half-classical I Example Cuntz algebras, � O n = C ∗ ( V 1 , . . . , V n | V ∗ V i V ∗ i V j = δ ij , i = 1) . i Then U ( n ) � O n by � α u ( V i ) = u ji V j . j In particular, S 1 � O n by α z ( V i ) = zV i .

  19. CQG Compact actions Non-compact actions Example: Half-classical II Example (Banica) Free spheres, � C ( S N − 1 ) = < V 1 , . . . , V N | V i = V ∗ V 2 i , i = 1 } . + i Then O ( N ) � C ( S N − 1 ) by + � α g ( V i ) = g ji V j . j

  20. CQG Compact actions Non-compact actions Left actions of compact quantum groups on C ∗ -algebras Definition (Podle´ s) Left action G � H : ◮ Compact quantum group G , ◮ C ∗ -algebra C ( X ) , ◮ Unital ∗ -homomorphism, left coaction α : C ( X ) → C ( G ) ⊗ C ( X ) s.t. ◮ coaction property: (id G ⊗ α ) ◦ α = (∆ ⊗ id X ) ◦ α, ◮ density: [( C ( G ) ⊗ 1 X ) α ( C ( X ))] = C ( X ) ⊗ C ( G ) .

  21. CQG Compact actions Non-compact actions From left to right Definition Let G CQG. Then G op CQG by C ( G op ) = C ( G ) , ∆ G op = ∆ op G = ς ◦ ∆ , where ς : C ( G ) ⊗ C ( G ) → C ( G ) ⊗ C ( G ) , g ⊗ h �→ h ⊗ g. Lemma α op α � G op . ↔ G � X X

  22. CQG Compact actions Non-compact actions Non-unital C ∗ -algebras Definition (Multiplier C ∗ -algebras) C 0 ( X ) non-unital C ∗ -algebra (‘locally compact quantum space’) . Multiplier C ∗ -algebra M ( C 0 ( X )) = C b ( X ) : ◮ Concrete: For C 0 ( X ) ⊆ B ( H ) with [ C 0 ( X ) H ] = H : C b ( X ) = { T ∈ B ( H ) | ∀ a ∈ C 0 ( X ) , Ta, aT ∈ C 0 ( X ) } . ◮ Abstract: C b ( X ) collection maps T : C 0 ( X ) → C 0 ( X ) s.t. ∃ T ∗ , ∀ a, b ∈ C 0 ( X ) , a ∗ ( Tb ) = ( T ∗ b ) ∗ a. If T ∈ C b ( X ) : T ( ab ) = T ( a ) b , and C 0 ( X ) ⊆ C b ( X ) . Example If X locally compact Hausdorff space, M ( C 0 ( X )) = C b ( X ) .

  23. CQG Compact actions Non-compact actions Morphisms between locally compact quantum spaces Definition ∗ -homomorphism π : C 0 ( Y ) → M ( C 0 ( X )) non-degenerate: [ π ( C 0 ( Y )) C 0 ( X )] = C 0 ( X ) . Example Let X, Y locally compact Hausdorff spaces. ◮ Non-degenerate maps C 0 ( Y ) → C b ( X ) ⇔ continuous maps X → Y . ◮ Non-degenerate maps C 0 ( Y ) → C 0 ( X ) ⇔ continuous proper maps X → Y . ◮ Degenerate map C 0 ( Y ) → C b ( X ) : points of X to infinity. Lemma π : C 0 ( Y ) → C b ( X ) non-degenerate ⇒ ∃ ! π : C b ( Y ) → C b ( X ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend