groups of order p k for k 1 2 6
play

Groups of order p k for k = 1 , 2 , . . . , 6 p = 2 p = 3 p 5 p 1 - PowerPoint PPT Presentation

The groups of order p 7 Eamonn OBrien and Michael Vaughan-Lee The groups of order p 7 p. 1 Groups of order p k for k = 1 , 2 , . . . , 6 p = 2 p = 3 p 5 p 1 1 1 p 2 2 2 2 p 3 5 5 5 p 4 14 15 15 p 5 51 67 u p 6 267 504


  1. The groups of order p 7 Eamonn O’Brien and Michael Vaughan-Lee The groups of order p 7 – p. 1

  2. Groups of order p k for k = 1 , 2 , . . . , 6 p = 2 p = 3 p ≥ 5 p 1 1 1 p 2 2 2 2 p 3 5 5 5 p 4 14 15 15 p 5 51 67 u p 6 267 504 v u = 2 p + 61 + 2 gcd( p − 1 , 3) + gcd( p − 1 , 4) v = 3 p 2 +39 p +344+24 gcd( p − 1 , 3)+11 gcd( p − 1 , 4)+2 gcd( p − 1 , 5) The groups of order p 7 – p. 2

  3. Order p 7 p = 2 p = 3 p = 5 2328 9310 34297 For p > 5 the number of groups of order p 7 is 3 p 5 + 12 p 4 + 44 p 3 + 170 p 2 + 707 p + 2455 +(4 p 2 + 44 p + 291) gcd( p − 1 , 3) +( p 2 + 19 p + 135) gcd( p − 1 , 4) +(3 p + 31) gcd( p − 1 , 5) +4 gcd( p − 1 , 7) + 5 gcd( p − 1 , 8) + gcd( p − 1 , 9) The groups of order p 7 – p. 3

  4. Baker-Campbell-Hausdorff Formula e x . e y = e u where x + y − 1 2[ y, x ] + 1 12[ y, x, x ] − 1 12[ y, x, y ] + 1 u = 24[ y, x, x, y ] − 1 1 1 720[ y, x, x, x, x ] − 180[ y, x, x, x, y ] + 180[ y, x, x, y, y ] + 1 1 1 720[ y, x, y, y, y ] − 120[ y, x, x, [ y, x ]] − 360[ y, x, y, [ y, x ]] + . . The groups of order p 7 – p. 4

  5. Baker-Campbell-Hausdorff Formula e x . e y = e u where x + y − 1 2[ y, x ] + 1 12[ y, x, x ] − 1 12[ y, x, y ] + 1 u = 24[ y, x, x, y ] − 1 1 1 720[ y, x, x, x, x ] − 180[ y, x, x, x, y ] + 180[ y, x, x, y, y ] + 1 1 1 720[ y, x, y, y, y ] − 120[ y, x, x, [ y, x ]] − 360[ y, x, y, [ y, x ]] + . . [e y , e x ] = e w where [ y, x ] + 1 2[ y, x, x ] + 1 w = 2[ y, x, y ] +1 6[ y, x, x, x ] + 1 4[ y, x, x, y ] + 1 6[ y, x, y, y ] + . . . The groups of order p 7 – p. 4

  6. If L is a Lie algebra define a group operation ◦ on L by setting a ◦ b = a + b − 1 2[ b, a ] + 1 12[ b, a, a ] − 1 12[ b, a, b ] + . . . This works if L is a nilpotent Lie algebra over Q , or if L is a Lie ring of order p k and L is nilpotent of class at most p − 1 . The groups of order p 7 – p. 5

  7. If G is a group under ◦ and if a, b ∈ G define G ◦ [ b, a, a ] − 1 1 1 a + b = a ◦ b ◦ [ b, a ] ◦ [ b, a, b ] G ◦ . . . 2 12 12 G [ b, a ] L = [ b, a ] G ◦ [ b, a, a ] − 1 G ◦ [ b, a, b ] − 1 G ◦ . . . 2 2 The groups of order p 7 – p. 6

  8. If G is a group under ◦ and if a, b ∈ G define G ◦ [ b, a, a ] − 1 1 1 a + b = a ◦ b ◦ [ b, a ] ◦ [ b, a, b ] G ◦ . . . 2 12 12 G [ b, a ] L = [ b, a ] G ◦ [ b, a, a ] − 1 G ◦ [ b, a, b ] − 1 G ◦ . . . 2 2 We need G to be nilpotent, and we need unique extraction of roots. So this works if G is a nilpotent torsion free divisible group, or if G is a finite p -group of class at most p − 1 . The groups of order p 7 – p. 6

  9. If G is a group under ◦ and if a, b ∈ G define G ◦ [ b, a, a ] − 1 1 1 a + b = a ◦ b ◦ [ b, a ] ◦ [ b, a, b ] G ◦ . . . 2 12 12 G [ b, a ] L = [ b, a ] G ◦ [ b, a, a ] − 1 G ◦ [ b, a, b ] − 1 G ◦ . . . 2 2 This gives the Mal’cev correspondence between nilpotent Lie algebras over Q and nilpotent torsion free divisible groups. It also gives the Lazard correspondence between nilpotent Lie rings of order p k and class at most p − 1 and finite groups of order p k and class at most p − 1 . The groups of order p 7 – p. 6

  10. Classify groups of order p 7 for p > 5 by classifying nilpotent Lie rings of order p 7 . Use the Lie ring generation algorithm to classify the Lie rings. (Analogous to the p -group generation algorithm.) Then use the Baker-Campbell-Hausdorff formula to translate Lie ring presentations into group presentations. The groups of order p 7 – p. 7

  11. Lower exponent- p -central series L 1 = L L 2 = pL + [ L, L ] L 3 = pL 2 + [ L 2 , L ] . . . L n +1 = pL n + [ L n , L ] a, b ba, pa, pb baa, bab, pba, p 2 a, p 2 b . . . The groups of order p 7 – p. 8

  12. L has p -class c if L c +1 = { 0 } , L c � = { 0 } . Classify the nilpotent Lie rings of order p k according to p -class. If L has p -class c > 1 then we say that L is an immediate descendant of L/L c . To classify nilpotent Lie rings of order p k , first classify all nilpotent Lie rings of order p m for m < k . If L has order p m ( m < k ) find all immediate descendants of L of order p k . The groups of order p 7 – p. 9

  13. The p -covering ring Let M be a nilpotent d -generator Lie ring of order p m The p -covering ring � M is the largest d -generator Lie ring with an ideal Z satisfying Z ≤ ζ ( � M ) pZ = { 0 } M/Z ∼ � = M The groups of order p 7 – p. 10

  14. Immediate descendants If M has p -class c then every immediate descendant of M is of the form � M/T for some T < Z such that T + � M c +1 = Z If α is an automorphism of M then α lifts to an automorphism α ∗ of � M . M/S ∼ � = � M/T if and only if T = Sα ∗ for some α . The groups of order p 7 – p. 11

  15. An example � a, b | pa − baa − xbabb, pb − babb, class = 4 � ( 0 ≤ x < p ) The groups of order p 7 – p. 12

  16. An example � a, b | pa − baa − xbabb, pb − babb, class = 4 � ( 0 ≤ x < p ) My M AGMA program computes this as a Lie algebra over Z [ x, y, z, x 1 , x 2 , . . . , x 12 ] . The groups of order p 7 – p. 12

  17. An example � a, b | pa − baa − xbabb, pb − babb, class = 4 � ( 0 ≤ x < p ) My M AGMA program computes this as a Lie algebra over Z [ x, y, z, x 1 , x 2 , . . . , x 12 ] . The power map u �→ pu is handled as a linear map from L to L satisfying the relations ( pu ) v = p ( uv ) for all u, v ∈ L . The groups of order p 7 – p. 12

  18. An example � a, b | pa − baa − xbabb, pb − babb, class = 4 � ( 0 ≤ x < p ) My M AGMA program computes this as a Lie algebra over Z [ x, y, z, x 1 , x 2 , . . . , x 12 ] . The power map u �→ pu is handled as a linear map from L to L satisfying the relations ( pu ) v = p ( uv ) for all u, v ∈ L . a 1 = a, a 2 = b a 3 = ba a 4 = baa, a 5 = bab a 6 = babb The groups of order p 7 – p. 12

  19. Computing the automorphism group Consider an automorphism given by a 1 �→ x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 + x 6 a 6 a 2 �→ x 7 a 1 + x 8 a 2 + x 9 a 3 + x 10 a 4 + x 11 a 5 + x 12 a 6 The groups of order p 7 – p. 13

  20. Computing the automorphism group Consider an automorphism given by a 1 �→ x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 + x 6 a 6 a 2 �→ x 7 a 1 + x 8 a 2 + x 9 a 3 + x 10 a 4 + x 11 a 5 + x 12 a 6 The program gives the following conditions on x 1 , x 2 , . . . , x 12 class by class. The groups of order p 7 – p. 13

  21. Computing the automorphism group Consider an automorphism given by a 1 �→ x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 + x 6 a 6 a 2 �→ x 7 a 1 + x 8 a 2 + x 9 a 3 + x 10 a 4 + x 11 a 5 + x 12 a 6 At class 2, nothing. The groups of order p 7 – p. 13

  22. Computing the automorphism group Consider an automorphism given by a 1 �→ x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 + x 6 a 6 a 2 �→ x 7 a 1 + x 8 a 2 + x 9 a 3 + x 10 a 4 + x 11 a 5 + x 12 a 6 At class 3: − x 2 1 x 8 + x 1 x 2 x 7 + x 1 = 0 − x 1 x 2 x 8 + x 2 2 x 7 = 0 x 7 = 0 This gives x 2 = x 7 = 0 , x 8 = x − 1 1 . The groups of order p 7 – p. 13

  23. Computing the automorphism group Consider an automorphism given by a 1 �→ x 1 a 1 + x 2 a 2 + x 3 a 3 + x 4 a 4 + x 5 a 5 + x 6 a 6 a 2 �→ x 7 a 1 + x 8 a 2 + x 9 a 3 + x 10 a 4 + x 11 a 5 + x 12 a 6 Set x 2 = x 7 = 0 , and then at class 4 we have − x 2 1 x 8 + x 1 = 0 − xx 1 x 3 8 + xx 1 = 0 − x 1 x 3 8 + x 8 = 0 These relations give x 1 = x 8 = 1 . The groups of order p 7 – p. 13

  24. L , has order p 9 with The p -covering ring, � a 7 = babba a 8 = pa − baa − xbabb a 9 = pb − babb � L 5 is generated by a 7 = babba , and so the immediate descendants of L are � a, b | pa − baa − xbabb − ybabba, pb − babb − zbabba � with class 5 and 0 ≤ y, z < p . The groups of order p 7 – p. 14

  25. If we apply the automorphism a 1 �→ a 1 + x 3 a 3 + x 4 a 4 + x 5 a 5 + x 6 a 6 a 2 �→ a 2 + x 9 a 3 + x 10 a 4 + x 11 a 5 + x 12 a 6 to � L , then babba �→ babba pa − baa − xbabb + ( x 2 pa − baa − xbabb �→ 3 + 2 x 5 ) babba pb − babb �→ pb − babb So we can take y = 0 , and we have p non-isomorphic descendants for each value of x . � a, b | pa − baa − xbabb, pb − babb − zbabba, class = 5 � The groups of order p 7 – p. 15

  26. Apply the Baker-Campbell-Hausdorff formula, and obtain the group relations [ b, a, a ] · [ b, a, b, b ] x · [ b, a, b, b, a ] ( x +1 / 3) a p = b p [ b, a, b, b ] · [ b, a, b, b, a ] z = The groups of order p 7 – p. 16

  27. M AGMA functions for checking results The groups of order p 7 – p. 17

  28. M AGMA functions for checking results Descendants(G:StepSizes:=[s]) — compute immediate descendant of G of order | G | · p s The groups of order p 7 – p. 17

  29. M AGMA functions for checking results Descendants(G:StepSizes:=[s]) — compute immediate descendant of G of order | G | · p s ClassTwo(p,d,s) — count number of d -generator p -class 2 groups of order p d + s The groups of order p 7 – p. 17

  30. M AGMA functions for checking results Descendants(G:StepSizes:=[s]) — compute immediate descendant of G of order | G | · p s ClassTwo(p,d,s) — count number of d -generator p -class 2 groups of order p d + s IsIsomorphic(P ,Q) The groups of order p 7 – p. 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend