electroexcitation of nucleon resonances in a light front
play

Electroexcitation of nucleon resonances in a light-front - PowerPoint PPT Presentation

Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Electroexcitation of nucleon resonances in a light-front relativistic quark model Inna G. Aznauryan & Volker D. Burkert August 22, 2017 Inna


  1. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Electroexcitation of nucleon resonances in a light-front relativistic quark model Inna G. Aznauryan & Volker D. Burkert August 22, 2017 Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  2. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Content The approach and its parameters are specified via description of nucleon electromagnetic form factors for Q 2 ≤ 20 GeV 2 . We therefore begin with the nucleon electromagnetic form factors. ◮ Nucleon electromagnetic form factors G Ep , G Mp , G En , G Mn → q 3 + π N loops contributions in light-front dynamics → running quark mass + ◮ Electroexcitation of ∆(1232) 3 2 + , N + (1520) 3 ◮ Electroexcitation of N + (1440) 1 − , N + (1535) 1 − 2 2 2 → q 3 contribution in a LF RQM with running quark mass → inferred MB contributions (non-QM contributions) − and N 0 (1675) 5 ◮ Electroexcitation of N + (1675) 5 − 2 2 → isolating MB contributions Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  3. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Nucleon electromagnetic form factors � � � � q q � � q N N N N N N N N q N (a) (c) (b) The contributions (a), (b), (c) can be found in Refs.: ◮ I. G. Aznauryan and V. D. Burkert, PR C85, 055202, 2012 [(a): I. G. Aznauryan, PL B316, 391, 1993; Z. f. Phys. A346, 297, 1993] ◮ G. A. Miller, PR C66, 032201, 2002 in the LF approach developed by ◮ V. B. Berestetsky and Terent’ev, Sov.J.Nucl.Phys. 25,347,1977 ◮ I. G. Aznauryan, A. S. Bagdasaryan, and N. L. Ter-Isaakyan, PL B112, 393, 1982 Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  4. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Parameters � � � � q q � � q N N N N N N N N q N (a) (c) (b) ◮ (a) Here we have two parameters: m q ( Q 2 = 0) and α q . α q determines the quark momentum distribution. These parameters are fixed by G Mp (0) and G Mn (0). We have found m q (0) = 0 . 22GeV in agreement with the quark mass obtained from description of the baryon and meson masses in the relativized QM by S. Godfrey and N. Isgur, PR D21, 1868, 1980; S. Capstick and N. Isgur, PR D32, 189, 1985. ◮ (b,c) Here we have also two parameters: f π NN and α π N . f π NN is known: f 2 π NN / 4 π = 14 . 5. α π N determines the π and N momentum distribution in the loop; it is fixed by G En ( Q 2 ), because the contribution of the diagrams (b) and (c) is crucial for the description of G En ( Q 2 ) at Q 2 < 1 . 5 GeV 2 . Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  5. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Renormalization of the N ( N ∗ ) → 3 q vertices due to the MB loops ◮ The diagrams (b) and (c) give ≈ 10% contribution to the charge of the proton: see plot for G Ep . Therefore, to keep the charge of the proton Q p = 1, we have to renormalize the vertex N → 3 q . In the absence of meson-baryon loops and with the N → 3 q wave function normalized as: | Φ( q 1 , q 2 , q 3 ) | 2 d Γ = 1, we have | N > = | 3 q > . � With the π N loops included, we get: | N > = 0 . 95 | 3 q > +... . ◮ Similar to the nucleon, MB loops contribute to the charge of other baryons, including resonances. Therefore, the vertices N ∗ → 3 q should be renormalized: | N ∗ > = c N ∗ | 3 q > +... , c N ∗ < 1. ◮ We find the coefficients c N ∗ from experimental data on γ ∗ N → N ∗ assuming that at Q 2 > 4 GeV 2 these transitions are determined only by the 3 q contributions. Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  6. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Coeffients of core q 3 resonance excitations. : + : c N ∗ = 0 . 88 ± 0 . 04 ◮ ∆(1232) 3 2 + : c N ∗ = 0 . 93 ± 0 . 05 ◮ N (1440) 1 2 ◮ N (1520) 3 − : c N ∗ = 0 . 80 ± 0 . 06 2 ◮ N (1535) 1 − : c N ∗ = 0 . 91 ± 0 . 03 2 Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  7. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Running quark mass ◮ With the fixed quark mass we have good description of all nucleon electromagnetic form 0.25 factors up to Q 2 = 2 GeV 2 . m q ◮ At Q 2 > 2 GeV 2 , a constant value of the quark mass gives rise to rapidly decreasing form factors 0.2 in discrepancy with experiment. ◮ Good description of the form factors up to 0.15 Q 2 =0 M 0 2 =1.35 Q 2 = 20 GeV 2 has been obtained with running Q 2 =5 M 0 2 =2.66 quark mass exploring two forms of wave functions: Q 2 =10 M 0 2 =3.1 Q 2 =20 M 0 2 =3.5 ◮ (1) Φ 1 ∼ exp ( − M 2 0 /α 2 0.1 1 ), Φ 2 ∼ exp [ − ( q 2 1 + q 2 2 + q 2 3 ) /α 2 (2) 2 ]; wave function (1) M 2 0 in the plot is mean value of 0.05 M 2 0 = ( q 1 + q 2 + q 3 ) 2 . wave function (2) ◮ In LF RQM, the virtuality of quarks is characterized by the invariant mass of the 0 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3-quark system M 2 0 = ( q 1 + q 2 + q 3 ) 2 , which is M 0 2 (GeV 2 ) increasing with increasing Q 2 . Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  8. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary The proton electric form factor G Ep ◮ Hall A ∗ data are obtained from the data on µ p G Ep / G Mp via multiplication by G Ep /G D 1 G Mp /µ p using parameterization of the data on G Mp /µ p found in E. J. Brash et 0.8 al., PR C65, 051001, 2002 0.6 ◮ Hall A, 2000: M. K. Jones et al., PRL 84, 1398, 2000 0.4 ◮ Hall A, 2002: O. Gayou et al., PRL 88, 0.2 092301, 2002 0 ◮ Hall A, 2012: A. J. R. Puckett et al., PR � N+LF RQM (running quark mass) C85, 045203, 2012 -0.2 � N+LF RQM (fixed quark mass) � N contribution ◮ Hall A, 2010: A. J. R. Puckett et al., -0.4 PRL 104, 242301, 2010 Hall A * : 2000,2002(2012),2010 -0.6 0 1 2 3 4 5 6 7 8 9 Q 2 (GeV 2 ) Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  9. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary The proton magnetic form factor G Mp 1.2 G Mp / µ p G D ◮ Hall A: I. A. Qattan et al., PRL 94, 1 142301, 2005 0.8 ◮ Hall C: M. E. Christy et al., PR C70, 0.6 015206, 2004 ◮ DESY: W. Bartel et al., NP B58, 429, 0.4 � N contribution 1973 � N+LF RQM (running quark mass) 0.2 � N+LF RQM (fixed quark mass) ◮ SLAC: A. F. Sill et al., PR D48, 29, 1993 0 Hall A Hall C -0.2 DESY SLAC -0.4 0 2 4 6 8 10 12 14 16 Q 2 (GeV 2 ) Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  10. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary The neutron electric form factor G En G En ◮ (*): R. Schiavilla and I. Sick, PR C64, 0.06 041002, 2001 (*) Hall C ◮ Hall C: R. Madey et al., PRL 91,122002, 0.04 Hall A 2003 ◮ Hall A: S. Riordan et al., PRL 105, 0.02 262302, 2010 0 � N+LF RQM (running quark mass) � N+LF RQM (fixed quark mass) � N contribution -0.02 0 0.5 1 1.5 2 2.5 3 3.5 4 Q 2 (GeV 2 ) Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  11. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary The neutron electric form factor G Mn G Mn / µ n G D 1 ◮ Hall C: B. Anderson et al., PR C75, 0.8 043003, 2007 0.6 ◮ CLAS: J. Lachniet et al., PRL 102,192001, 2009 0.4 � N+LF RQM (running quark mass) ◮ SLAC: S. Rock et al., PRL 49, 1139, 1982 � N+LF RQM (fixed quark mass) 0.2 � N contribution 0 Hall C CLAS -0.2 SLAC 0 2 4 6 8 10 Q 2 (GeV 2 ) Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

  12. Content The Model EM FF Delta(1232) N* on protons N* on neutrons Running quark mass Summary Magnetic ∆ form factor G M ∆ and Quadrupole ratios R EM , R SM 6 1 R EM (%) G M,Ash /3G D 4 2 0 0.8 -2 -4 -6 -8 0.6 CLAS 0 Hall C R SM (%) Hall A -10 0.4 MAMI -20 -30 0.2 -40 LF RQM -50 0 2 4 6 8 10 12 0 0 2 4 6 8 10 12 Q 2 (GeV 2 ) Q 2 (GeV 2 ) → R EM ≈ − 2%, dominated by MB contributions → G M described by LF RQM at Q 2 > 3 − 4 GeV 2 → R SM described at Q 2 > 3 GeV 2 . ◮ CLAS: from analysis I. G. Aznauryan et al., CLAS collaboration, PR C80,055203, 2009 ◮ Hall C: V. V. Frolov et al., PRL 82, 45, 1999; A. N. Vilano et al., PR C80, 035203, 2009 ◮ Hall A: J. J. Kelly et al., PR C75, 025201, 2007 ◮ MAMI: N. F. Sparveris et al., PL B651, 102, 2007; S. Stave et al., PR C78, 025209, 2008 Inna G. Aznauryan & Volker D. Burkert Electroexcitation of nucleon resonances in a light-front relativistic quark model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend