einstein wiener khinchin theorem psd applications
play

Einstein-Wiener-Khinchin theorem, PSD applications, modeling filters - PowerPoint PPT Presentation

Einstein-Wiener-Khinchin theorem, PSD applications, modeling filters 6.011, Spring 2018 Lec 19 1 Periodograms (e.g., a unit-intensity white process) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2


  1. Einstein-Wiener-Khinchin theorem, PSD applications, modeling filters 6.011, Spring 2018 Lec 19 1

  2. Periodograms (e.g., a unit-intensity “white” process) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 v /(2 p ) v /(2 p ) v /(2 p ) v /(2 p ) M = 4, T = 50 M = 4, T = 200 4 4 CT case: X T ( jω ) ↔ x ( t ) windowed to [ − T, T ] − 3 3 2 2 | X T ( j ω ) | 2 Periodogram = 1 1 2 T 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 v /(2 p ) v /(2 p ) M = 16, T = 50 M = 16, T = 200 4 DT case: X N ( e j Ω ) ↔ x [ n ] windowed to [ − N, N ] 4 − 3 3 2 2 | X N ( e j Ω ) | 2 Periodogram = 1 1 2 2 N + 1 0 0 v /(2 p ) v /(2 p )

  3. Einstein-Wiener-Khinchin theorem 1 sin 2 ( ! T ) h | X T ( j ! ) | 2 i = S xx ( j ! ) ? E 2 T ⇡! 2 T sin 2 ( ! T ) Since lim � = δ ( ω ) , ⇡! 2 T T →∞ | X T ( j ! ) | 2 i 1 h lim = S xx ( j ! ) E T →∞ 2 T 3

  4. Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 v /(2 p ) v /(2 p ) v /(2 p ) v /(2 p ) M = 4, T = 50 M = 4, T = 200 4 4 3 3 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 v /(2 p ) v /(2 p ) M 16, T 50 M 16, T 200 4 4 3 3 2 2 4 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 v /(2 p ) v /(2 p )

  5. Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem) M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 M = 1, T = 50 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 v /(2 p ) v /(2 p ) v /(2 p ) v /(2 p ) M = 4, T = 50 M = 4, T = 200 4 4 3 3 2 2 1 1 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 v /(2 p ) v /(2 p ) M = 16, T = 50 M = 16, T = 200 4 4 3 3 2 2 1 1 5 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 v /(2 p ) v /(2 p )

  6. Respiratory model cf. Khoo’s 6 textbook for N=1

  7. Heart rate variability ECG signal 1.2 1 0.8 ECG amplitude (mV) 0.6 0.4 (a) 0.2 0 − 0.2 − 0.4 − 0.6 − 0.8 54 56 58 60 62 64 66 Time (sec) Instantaneous HR signal 1.3 x ( t ) (beats/sec) 1.25 (b) 1.2 1.15 1.1 45 50 55 60 65 70 75 80 Time (sec) Power spectrum 90 80 70 60 xx ( e ) j Æ 50 (c) 40 D 30 20 7 10 0 − 1 − 0.8 − 0.6 − 0.4 − 0.2 0 0.2 0.4 0.6 0.8 1 Frequency (Hz)

  8. Modeling filters e.g., generate sample functions of WSS y [ · ] that has specified µ y σ − δ 2 ( ρδ [ m − 1] + δ [ m ] + ρδ [ m + 1]) and C yy [ m ] = σ y ↓ δ δ − Try h [ n ] = aδ [ n ] + bδ [ n − 1] driven by unit-intensity white noise x [ · ], | H ( e j Ω ) | 2 = D yy ( e j Ω ) H ( z ) = a + bz − 1 , More generally, H ( z ) A ( z ) for allpass A ( z ) , A ( z ) A ( z − 1 ) = 1 Need to add mean µ y to the output 8

  9. MIT OpenCourseWare https://ocw.mit.edu 6.011 Signals, Systems and Inference Spring 201 8 For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend