eigenvalues and eigenvectors few concepts to remember
play

Eigenvalues and Eigenvectors Few concepts to remember from linear - PowerPoint PPT Presentation

Eigenvalues and Eigenvectors Few concepts to remember from linear algebra Let be an matrix and the linear transformation = Rank: maximum number of linearly independent


  1. Eigenvalues and Eigenvectors

  2. Few concepts to remember from linear algebra Let ๐‘ฉ be an ๐‘œร—๐‘› matrix and the linear transformation ๐’› = ๐‘ฉ๐’š ๐‘ฉ ๐’› โˆˆ โ„› ๐’ ๐’š โˆˆ โ„› ๐’ โ†’ Rank: maximum number of linearly independent columns or rows of ๐‘ฉ โ€ข Range ๐‘ฉ = ๐’› = ๐‘ฉ๐’š โˆ€๐’š} โ€ข Null ๐‘ฉ = ๐’š ๐‘ฉ๐’š = ๐Ÿ} โ€ข

  3. Eigenvalue problem Let ๐‘ฉ be an ๐‘œร—๐‘œ matrix: ๐’š โ‰  ๐Ÿ is an eigenvector of ๐‘ฉ if there exists a scalar ๐œ‡ such that ๐‘ฉ ๐’š = ๐œ‡ ๐’š where ๐œ‡ is called an eigenvalue . If ๐’š is an eigenvector, then ฮฑ๐’š is also an eigenvector. Therefore, we will usually seek for normalized eigenvectors , so that ๐’š = 1 Note: When using Python, numpy.linalg.eig will normalize using p=2 norm.

  4. How do we find eigenvalues? Linear algebra approach: ๐‘ฉ ๐’š = ๐œ‡ ๐’š ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ ๐’š = ๐Ÿ Therefore the matrix ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ is singular โŸน ๐‘’๐‘“๐‘ข ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ = 0 ๐‘ž ๐œ‡ = ๐‘’๐‘“๐‘ข ๐‘ฉ โˆ’ ๐œ‡ ๐‘ฑ is the characteristic polynomial of degree ๐‘œ . In most cases, there is no analytical formula for the eigenvalues of a matrix (Abel proved in 1824 that there can be no formula for the roots of a polynomial of degree 5 or higher) โŸน Approximate the eigenvalues numerically !

  5. Example ๐‘ฉ = 2 1 ๐‘’๐‘“๐‘ข 2 โˆ’ ๐œ‡ 1 2 โˆ’ ๐œ‡ = 0 4 2 4 Solution of characteristic polynomial gives: ๐œ‡ . = 4, ๐œ‡ / = 0 To get the eigenvectors, we solve: ๐‘ฉ ๐’š = ๐œ‡ ๐’š ๐‘ฆ $ ๐’š = 1 2 โˆ’ (4) 1 = 0 ๐‘ฆ % 2 4 2 โˆ’ (4) 0 ๐‘ฆ $ 2 โˆ’ (0) 1 = 0 ๐’š = โˆ’1 ๐‘ฆ % 4 2 โˆ’ (0) 0 2 Notes: The matrix ๐‘ฉ is singular (det(A)=0), and rank( ๐‘ฉ )=1 The matrix has two distinct real eigenvalues The eigenvectors are linearly independent

  6. Diagonalizable Matrices A ๐‘œร—๐‘œ matrix ๐‘ฉ with ๐‘œ linearly independent eigenvectors ๐’— is said to be diagonalizable . ๐‘ฉ ๐’— ๐Ÿ = ๐œ‡ . ๐’— ๐Ÿ , ๐‘ฉ ๐’— ๐Ÿ‘ = ๐œ‡ / ๐’— ๐Ÿ‘ , โ€ฆ ๐‘ฉ ๐’— ๐’ = ๐œ‡ ; ๐’— ๐’ , In matrix form: ๐œ‡ # 0 0 ๐‘ฉ ๐’— ๐Ÿ โ€ฆ ๐’— ๐’ = ๐œ‡ # ๐’— ๐Ÿ ๐œ‡ $ ๐’— ๐’ = ๐’— ๐Ÿ โ€ฆ ๐’— ๐’ โ€ฆ 0 โ‹ฑ 0 0 0 ๐œ‡ $ This corresponds to a similarity transformation ๐‘ฉ๐‘ฝ = ๐‘ฝ๐‘ฌ โŸบ ๐‘ฉ = ๐‘ฝ๐‘ฌ๐‘ฝ %๐Ÿ

  7. ๐‘’๐‘“๐‘ข 2 โˆ’ ๐œ‡ 1 ๐‘ฉ = 2 1 Example 2 โˆ’ ๐œ‡ = 0 4 4 2 Solution of characteristic polynomial gives: ๐œ‡ . = 4, ๐œ‡ / = 0 To get the eigenvectors, we solve: ๐‘ฉ ๐’š = ๐œ‡ ๐’š ๐‘ฆ $ ๐’š = 0.447 2 โˆ’ (4) 1 = 0 ๐’š = 1 or normalized ๐‘ฆ % 0.894 4 2 โˆ’ (4) 0 2 eigenvector ( ๐‘ž = 2 norm) ๐‘ฆ $ ๐’š = โˆ’0.447 2 โˆ’ (0) 1 ๐’š = โˆ’1 = 0 ๐‘ฆ % 0.894 2 4 2 โˆ’ (0) 0 ๐‘ฝ = 0.447 โˆ’0.447 ๐‘ฌ = 4 0 ๐‘ฉ = ๐‘ฝ๐‘ฌ๐‘ฝ <. 0.894 0.894 0 0 Notes: The matrix ๐‘ฉ is singular (det(A)=0), and rank( ๐‘ฉ )=1 Since ๐‘ฉ has two linearly independent eigenvectors, the matrix ๐‘ฝ is full rank, and hence, the matrix ๐‘ฉ is diagonalizable.

  8. Example The eigenvalues of the matrix: ๐‘ฉ = 3 โˆ’18 2 โˆ’9 are ๐œ‡ . = ๐œ‡ / = โˆ’3 . Select the incorrect statement: A) Matrix ๐‘ฉ is diagonalizable B) The matrix ๐‘ฉ has only one eigenvalue with multiplicity 2 C) Matrix ๐‘ฉ has only one linearly independent eigenvector D) Matrix ๐‘ฉ is not singular

  9. Letโ€™s look back at diagonalizationโ€ฆ 1) If a ๐‘œร—๐‘œ matrix ๐‘ฉ has ๐‘œ linearly independent eigenvectors ๐’š then ๐‘ฉ is diagonalizable, i.e., ๐‘ฉ = ๐‘ฝ๐‘ฌ๐‘ฝ <๐Ÿ where the columns of ๐‘ฝ are the linearly independent normalized eigenvectors ๐’š of ๐‘ฉ (which guarantees that ๐‘ฝ <๐Ÿ exists) and ๐‘ฌ is a diagonal matrix with the eigenvalues of ๐‘ฉ . 2) If a ๐‘œร—๐‘œ matrix ๐‘ฉ has less then ๐‘œ linearly independent eigenvectors, the matrix is called defective (and therefore not diagonalizable). 3) If a ๐‘œร—๐‘œ symmetric matrix ๐‘ฉ has ๐‘œ distinct eigenvalues then ๐‘ฉ is diagonalizable.

  10. A ๐’ร—๐’ symmetric matrix ๐‘ฉ with ๐’ distinct eigenvalues is diagonalizable. Suppose ๐œ‡ , ๐’— and ๐œˆ, ๐’˜ are eigenpairs of ๐‘ฉ ๐œ‡ ๐’— = ๐‘ฉ๐’— ๐œˆ ๐’˜ = ๐‘ฉ๐’˜ ๐œ‡ ๐’— = ๐‘ฉ๐’— โ†’ ๐’˜ 1 ๐œ‡ ๐’— = ๐’˜ 1 ๐‘ฉ๐’— ๐œ‡ ๐’˜ 1 ๐’— = ๐‘ฉ ๐‘ผ ๐’˜ 1 ๐’— = ๐‘ฉ ๐’˜ 1 ๐’— = ๐œˆ ๐’˜ 1 ๐’— โ†’ ๐œˆ โˆ’ ๐œ‡ ๐’˜ 1 ๐’— = 0 If all ๐‘œ eigenvalues are distinct โ†’ ๐œˆ โˆ’ ๐œ‡ โ‰  0 Hence, ๐’˜ 1 ๐’— = 0 , i.e., the eigenvectors are orthogonal (linearly independent), and consequently the matrix ๐‘ฉ is diagonalizable. Note that a diagonalizable matrix ๐‘ฉ does not guarantee ๐‘œ distinct eigenvalues.

  11. Some things to remember about eigenvalues: โ€ข Eigenvalues can have zero value โ€ข Eigenvalues can be negative โ€ข Eigenvalues can be real or complex numbers โ€ข A ๐‘œร—๐‘œ real matrix can have complex eigenvalues โ€ข The eigenvalues of a ๐‘œร—๐‘œ matrix are not necessarily unique. In fact, we can define the multiplicity of an eigenvalue. โ€ข If a ๐‘œร—๐‘œ matrix has ๐‘œ linearly independent eigenvectors, then the matrix is diagonalizable

  12. How can we get eigenvalues numerically? Assume that ๐‘ฉ is diagonalizable (i.e., it has ๐‘œ linearly independent eigenvectors ๐’— ). We can propose a vector ๐’š which is a linear combination of these eigenvectors: ๐’š = ๐›ฝ # ๐’— # + ๐›ฝ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐’— $ Then we evaluate ๐‘ฉ ๐’š : ๐‘ฉ ๐’š = ๐›ฝ # ๐‘ฉ๐’— # + ๐›ฝ ' ๐‘ฉ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐‘ฉ๐’— $ And since ๐‘ฉ๐’— # = ๐œ‡ # ๐’— # we can also write: ๐‘ฉ ๐’š = ๐›ฝ # ๐œ‡ # ๐’— # + ๐›ฝ ' ๐œ‡ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ ๐’— $ where ๐œ‡ ( is the eigenvalue corresponding to eigenvector ๐’— ( and we assume |๐œ‡ # | > |๐œ‡ ' | โ‰ฅ |๐œ‡ ) | โ‰ฅ โ‹ฏ โ‰ฅ |๐œ‡ $ |

  13. Power Iteration Our goal is to find an eigenvector ๐’— ( of ๐‘ฉ. We will use an iterative process, where we start with an initial vector, where here we assume that it can be written as a linear combination of the eigenvectors of ๐‘ฉ . ๐’š * = ๐›ฝ # ๐’— # + ๐›ฝ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐’— $ And multiply by ๐‘ฉ to get: ๐’š # = ๐‘ฉ ๐’š * = ๐›ฝ # ๐œ‡ # ๐’— # + ๐›ฝ ' ๐œ‡ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ ๐’— $ ๐’š ' = ๐‘ฉ ๐’š # = ๐›ฝ # ๐œ‡ # ' ๐’— # + ๐›ฝ ' ๐œ‡ ' ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ ' ๐’— $ โ‹ฎ ๐’š + = ๐‘ฉ ๐’š +%# = ๐›ฝ # ๐œ‡ # + ๐’— # + ๐›ฝ ' ๐œ‡ ' + ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐œ‡ $ + ๐’— $ Or rearrangingโ€ฆ + + ๐œ‡ ' ๐œ‡ $ ๐’š + = ๐œ‡ # + ๐›ฝ # ๐’— # + ๐›ฝ ' ๐’— ' + โ‹ฏ + ๐›ฝ $ ๐’— $ ๐œ‡ # ๐œ‡ #

  14. Power Iteration B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . Assume that ๐›ฝ . โ‰  0 , the term ๐›ฝ . ๐’— . dominates the others when ๐‘™ is very large. B Since |๐œ‡ . > |๐œ‡ / , we have C ! โ‰ช 1 when ๐‘™ is large C " Hence, as ๐‘™ increases, ๐’š B converges to a multiple of the first eigenvector ๐’— . , i.e., C " # = ๐›ฝ . ๐’— . or ๐’š B โ†’ ๐›ฝ . ๐œ‡ . B ๐’— . ๐’š # lim Bโ†’D

  15. How can we now get the eigenvalues? If ๐’š is an eigenvector of ๐‘ฉ such that ๐‘ฉ ๐’š = ๐œ‡ ๐’š then how can we evaluate the corresponding eigenvalue ๐œ‡ ? ๐œ‡ = ๐’š ๐‘ผ ๐‘ฉ๐’š Rayleigh coefficient ๐’š ๐‘ผ ๐’š

  16. Normalized Power Iteration & & ๐œ‡ % ๐œ‡ ' ๐’š & = ๐œ‡ $ & ๐›ฝ $ ๐’— $ + ๐›ฝ % ๐’— % + โ‹ฏ + ๐›ฝ ' ๐’— ' ๐œ‡ $ ๐œ‡ $ ๐’š ๐Ÿ = arbitrary nonzero vector ๐’š ๐Ÿ ๐’š ๐Ÿ = ๐’š ๐Ÿ for ๐‘™ = 1,2, โ€ฆ ๐’› B = ๐‘ฉ ๐’š B<. ๐’› # ๐’š B = ๐’› #

  17. Normalized Power Iteration B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . What if the starting vector ๐’š ๐Ÿ have no component in the dominant eigenvector ๐’— $ ( ๐›ฝ $ = 0 )? Demo โ€œPower Iteration

  18. Normalized Power Iteration B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . What if the first two largest eigenvalues (in magnitude) are the same, |๐œ‡ $ = |๐œ‡ % ? B B ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐œ‡ . B ๐œ‡ / ๐œ‡ ; ๐›ฝ / ๐’— / + ๐œ‡ . B โ€ฆ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . Demo โ€œPower Iteration

  19. Potential pitfalls Starting vector ๐’š ๐Ÿ may have no component in the dominant eigenvector ๐’— " (๐›ฝ " = 1. 0) . This is usually unlikely to happen if ๐’š ๐Ÿ is chosen randomly, and in practice not a problem because rounding will usually introduce such component. 2. Risk of eventual overflow (or underflow): in practice the approximated eigenvector is normalized at each iteration (Normalized Power Iteration) First two largest eigenvalues (in magnitude) may be the same: |๐œ‡ " | = |๐œ‡ # | . In this 3. case, power iteration will give a vector that is a linear combination of the corresponding eigenvectors: โ€ข If signs are the same, the method will converge to correct magnitude of the eigenvalue. If the signs are different, the method will not converge. โ€ข This is a โ€œrealโ€ problem that cannot be discounted in practice.

  20. Error B B ๐œ‡ / ๐œ‡ ; ๐’š B = ๐œ‡ . B ๐›ฝ . ๐’— . + ๐›ฝ / ๐’— / + โ‹ฏ + ๐›ฝ ; ๐’— ; ๐œ‡ . ๐œ‡ . ๐น๐‘ ๐‘ ๐‘๐‘  We can see from the above that the rate of convergence depends on the ratio C ! C " , that is: B ๐œ‡ / ๐œ‡ . <B ๐’š B โˆ’ ๐›ฝ . ๐’— . = ๐‘ƒ ๐œ‡ .

  21. Convergence and error B ๐’š B = ๐’— . + ๐›ฝ / ๐œ‡ / ๐’— / + โ‹ฏ ๐›ฝ . ๐œ‡ . ๐’‡ & ๐’‡ PQR ๐’‡ P โ‰ˆ ? S ? R Power method has linear convergence, which is quite slow.

  22. Iclicker question A) 0.1536 B) 0.192 C) 0.09 D) 0.027

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend