edt for power devices
play

EDT for Power Devices Cyril B UTTAY 1 , Chenjiang Y U 2 , ric L ABOUR - PowerPoint PPT Presentation

EDT for Power Devices Cyril B UTTAY 1 , Chenjiang Y U 2 , ric L ABOUR 2 , Vincent B LEY 3 , Cline C OMBETTES 3 1 Laboratoire Ampre, Lyon, France 2 GEEPS, Paris, France 3 LAPLACE, Toulouse, France 22/09/16 1 / 24 Outline Power electronics


  1. EDT for Power Devices Cyril B UTTAY 1 , Chenjiang Y U 2 , Éric L ABOURÉ 2 , Vincent B LEY 3 , Céline C OMBETTES 3 1 Laboratoire Ampère, Lyon, France 2 GEEPS, Paris, France 3 LAPLACE, Toulouse, France 22/09/16 1 / 24

  2. Outline Power electronics requirements Review of PCB-based packaging Proposed Embedding Technique Summary and Conclusion 2 / 24

  3. Outline Power electronics requirements Review of PCB-based packaging Proposed Embedding Technique Summary and Conclusion 3 / 24

  4. Layout of a power electronic device Source/Emitter Gate/Base ◮ 1–2 pads on top, one on the bottom ◮ 50-400 µ m thick, 1-100 mm 2 die area ◮ Usually Al on top, Ag on the back ◮ Up to hundreds A/thousands V Drain/Collector 4 / 24

  5. Thermal considerations Source: Lutz, J. et al. Semiconductor Power Devices – Physics, Characteristics, Reliability Springer, 2011 [1] ◮ Junction temperature up to 175 ° C (Si) ◮ Efficient cooling to avoid thermal runaway ◮ Ceramics often used 5 / 24

  6. Thermal considerations Source: Lutz, J. et al. Semiconductor Power Devices – Physics, Characteristics, Reliability Springer, 2011 [1] 7e+07 Ag ◮ Junction temperature up to 175 ° C (Si) Cu Electrical Conductivity (S.m −1 ) 6e+07 ◮ Efficient cooling to avoid thermal runaway 5e+07 Au Al 4e+07 ◮ Ceramics often used 3e+07 2e+07 Ni Sn 1e+07 Pb Ti 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Thermal Conductivity (W.cm −1 .K −1 ) 5 / 24

  7. Thermal considerations Source: Lutz, J. et al. Semiconductor Power Devices – Physics, Characteristics, Reliability Springer, 2011 [1] 7e+07 Ag Wiedemann−Franz law ◮ Junction temperature up to 175 ° C (Si) Cu Electrical Conductivity (S.m −1 ) 6e+07 ◮ Efficient cooling to avoid thermal runaway 5e+07 Au Al 4e+07 ◮ Ceramics often used 3e+07 2e+07 Ni Sn 1e+07 Pb Ti 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Thermal Conductivity (W.cm −1 .K −1 ) 5 / 24

  8. Thermal considerations Source: Lutz, J. et al. Semiconductor Power Devices – Physics, Characteristics, Reliability Springer, 2011 [1] 7e+07 Ag Wiedemann−Franz law ◮ Junction temperature up to 175 ° C (Si) Cu Electrical Conductivity (S.m −1 ) 6e+07 ◮ Efficient cooling to avoid thermal runaway 5e+07 Au Al 4e+07 ◮ Ceramics often used 3e+07 2e+07 Ni Sn 1e+07 Pb Ti Al 2 O 3 Si 3 N 4 AlN BeO 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Thermal Conductivity (W.cm −1 .K −1 ) 5 / 24

  9. Standard power module packaging ◮ Standard Power Modules offer good thermal management ◮ Well suited to higher voltages ( > 1200 V) ◮ Issues: large, not flexible, and high parasitic inductance 6 / 24

  10. Standard power module packaging ◮ Standard Power Modules offer good thermal management ◮ Well suited to higher voltages ( > 1200 V) ◮ Issues: large, not flexible, and high parasitic inductance 6 / 24

  11. Standard power module packaging ◮ Standard Power Modules offer good thermal management ◮ Well suited to higher voltages ( > 1200 V) ◮ Issues: large, not flexible, and high parasitic inductance 6 / 24

  12. Standard power module packaging ◮ Standard Power Modules offer good thermal management ◮ Well suited to higher voltages ( > 1200 V) ◮ Issues: large, not flexible, and high parasitic inductance 6 / 24

  13. Standard power module packaging ◮ Standard Power Modules offer good thermal management ◮ Well suited to higher voltages ( > 1200 V) ◮ Issues: large, not flexible, and high parasitic inductance 6 / 24

  14. Standard power module packaging ◮ Standard Power Modules offer good thermal management ◮ Well suited to higher voltages ( > 1200 V) ◮ Issues: large, not flexible, and high parasitic inductance 6 / 24

  15. Effect of the Packaging on Electrical Performance R Gh T h V DRh V In I Out R Gl T l V DRl ◮ Stray inductances cause ringing and switching losses ◮ Caused by packaging ◮ Issue highlighted by fast WBG semiconductors 7 / 24

  16. Effect of the Packaging on Electrical Performance L DC1 L DC2 C GDh R Gh L Gh C DSh T h C GSh V DRh C CM1 L Cdc L Sh V In C CM2 C DC C Out L Dl I Out C GDl R Gl L Gl C DSl T l C GSl V DRl L Sl L DC3 L DC4 ◮ Stray inductances cause ringing and switching losses ◮ Caused by packaging ◮ Issue highlighted by fast WBG semiconductors 7 / 24

  17. Active devices – Evolution of the Packaged Devices 5 5 0 3 N 2 source: wikimedia commons for all packages except the Directfet, courtesy International Rectifier, and the WL-CSP , c.f. below Volume (mm 3 ) Package type molding compound% silicon % leadframe % interconnect % DPAK 90 75 4 20 1 SO8 (wire) 28 83 6 10 1 SO8 (clip) 28 70 6 20 2 MOSFET BGA 20 0 40 50 10 WL-CSP 20 0 82 0 18 source for table and bottom figure: “Trends of power semiconductor wafer level packaging”, Yong LIU [2] ◮ Gradual disappearance of the FLP (First Level Packaging) ◮ All fabrication steps made directly on wafer: Wafer Level-Chip Scale Packaging 8 / 24

  18. Outline Power electronics requirements Review of PCB-based packaging Proposed Embedding Technique Summary and Conclusion 9 / 24

  19. Literature Review – Converter on a flex substrate ◮ Flex PCB instead of wirebonds ◮ backside attached to a DBC ◮ advantages: ◮ low profile, low inductance ◮ higher interconnect density ◮ Implementations: ◮ GE [3] ◮ CPES [4] T. Stockmeier et al. “SKiN: Double side sintering technology for new ◮ TU Berlin/Fraunhofer Inst. [5] packages”, ISPD 2011 ◮ Semikron [6]. . . images from ECPE Seminar “Power PCBs and Busbars”, Delft, 2008, Papers: [7, 8] 10 / 24

  20. Literature Review – “PCB-like” 3D structures P . Ning et al. “A novel high-temperature planar package for SiC multichip phase-leg power module”, IEEE Trans on PE vol 25, 2010, 25, 2059 Silver-sintered interconnects and Epoxy/Kapton insulation [9] 11 / 24

  21. Literature Review – “PCB-like” 3D structures P . Ning et al. “A novel high-temperature planar package for SiC multichip phase-leg power Weidner, et al. “Planar Interconnect Technology for Power Module System Integration”, CIPS module”, IEEE Trans on PE vol 25, 2010, 25, 2059 2012 Silver-sintered interconnects and SiPLIT Copper electroplating, Epoxy/Kapton insulation [9] laminated isolation laser-structured in-situ [10] 11 / 24

  22. ❤tt♣✿✴✴✇✇✇✳♣❝❞❛♥❞❢✳❝♦♠✴♣❝❞❡s✐❣♥✴✐♥❞❡①✳♣❤♣✴❡❞✐t♦r✐❛❧✴♠❡♥✉✲❢❡❛t✉r❡s✴✾✷✺✼✲❝♦♠♣♦♥❡♥t✲♣❛❝❦❛❣✐♥❣✲✶✹✵✺ Literature Review – Die embedding in PCB Low-inductance packaging for SiC [11] ◮ Half bridge module ◮ 0.8 nH loop inductance ◮ Embedding die using stud bumps E. Hoene, “Ultra Low Inductance Package for SiC” ECPE workshop on power boards, 2012 12 / 24

  23. Literature Review – Die embedding in PCB Low-inductance packaging for SiC [11] ◮ Half bridge module ◮ 0.8 nH loop inductance ◮ Embedding die using stud bumps E. Hoene, “Ultra Low Inductance Package for SiC” ECPE workshop on power boards, 2012 ◮ Power module development through german project Hi-LEVEL [12] ◮ 10 kW and 50 kW demonstrators ◮ Thick copper or DBC for thermal management ❤tt♣✿✴✴✇✇✇✳♣❝❞❛♥❞❢✳❝♦♠✴♣❝❞❡s✐❣♥✴✐♥❞❡①✳♣❤♣✴❡❞✐t♦r✐❛❧✴♠❡♥✉✲❢❡❛t✉r❡s✴✾✷✺✼✲❝♦♠♣♦♥❡♥t✲♣❛❝❦❛❣✐♥❣✲✶✹✵✺ 12 / 24

  24. Outline Power electronics requirements Review of PCB-based packaging Proposed Embedding Technique Summary and Conclusion 13 / 24

  25. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

  26. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

  27. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

  28. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

  29. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

  30. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

  31. Overview of the process ◮ Start with a DBC substrate ◮ Die attach (silver sintering) ◮ PCB stacking ◮ PCB lamination ◮ Topside copper etching ◮ Laser ablation ◮ Copper electroplating 14 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend