edge states at spin quantum hall transitions roberto
play

Edge states at spin quantum Hall transitions Roberto Bondesan - PowerPoint PPT Presentation

Motivations The model Solution Conductance and numerics Conclusion Edge states at spin quantum Hall transitions Roberto Bondesan (LPTENS/IPhT Saclay) With: I. Gruzberg (Chicago), J. Jacobsen (Paris), H. Obuse (Karlsruhe), H. Saleur (Saclay)


  1. Motivations The model Solution Conductance and numerics Conclusion Edge states at spin quantum Hall transitions Roberto Bondesan (LPTENS/IPhT Saclay) With: I. Gruzberg (Chicago), J. Jacobsen (Paris), H. Obuse (Karlsruhe), H. Saleur (Saclay) Workshop at GGI, Florence: New quantum states of matter in and out of equilibrium 24/04/2012 Based on BJS: arXiv:1101.4361, BGJOS: arXiv:1109.4866 Roberto Bondesan Edge states at SQH transitions

  2. Motivations The model Solution Conductance and numerics Conclusion Outline 1 Motivations Anderson transitions: IQHE, SQHE Edge states 2 The model Quantum network models Quantum-classical localization 3 Solution Superspins and σ -models Universality and critical exponents 4 Conductance and numerics Roberto Bondesan Edge states at SQH transitions

  3. Motivations The model Solution Conductance and numerics Conclusion Anderson transitions • Disordered non-interacting electrons • Symmetry classification [Dyson ’62, Altland,Zirnbauer ’97] • 10 classes (WD, Chiral, BdG) • E. g. : IQHE in class A, e it H ∈ U( N ) • Escaping localization in 2d [Evers,Mirlin ’08] • MIT Localized Extended • Topological phases Localized Localized Roberto Bondesan Edge states at SQH transitions

  4. Motivations The model Solution Conductance and numerics Conclusion Integer Quantum Hall Effect • 2DEG at high B , low T 1 Disorder h • Plateaus ρ xy = e 2 ν [Von Klitzing Nobel ’85] 2 Chiral edge states ν = 2 Roberto Bondesan Edge states at SQH transitions

  5. Motivations The model Solution Conductance and numerics Conclusion Integer Quantum Hall Effect • 2DEG at high B , low T 1 Disorder h • Plateaus ρ xy = e 2 ν [Von Klitzing Nobel ’85] 2 Chiral edge states ν = 2 Roberto Bondesan Edge states at SQH transitions

  6. Motivations The model Solution Conductance and numerics Conclusion Spin quantum Hall effect (SQHE) • d + id disordered superconductors [Senthil,Marston,Fisher ’99] • e it H ∈ Sp(2 N ), class C • Topological superconductor in 2d: σ spin ∈ 2 Z • � = QSH ( ∈ A II , T 2 = − 1, [Kane,Mele ’05] ) • Some aspects exactly solvable! Roberto Bondesan Edge states at SQH transitions

  7. Motivations The model Solution Conductance and numerics Conclusion Low-energy field theories • Non linear σ -model [Wegner ’79, Efetov ’83] : 1 � d 2 z ∂ † µ Z † S = α ∂ µ Z α 2 g 2 σ • IQHE criticality: topological term [Pruisken ’84] S top = i θ N [ Z ] • At θ = π (mod 2 π ), g σ = O (1), LogCFT c = 0 (?) σ H ∼ θ σ 0 ∼ 1 / g 2 σ • Bulk exponents, ξ , etc. indep. of θ (if θ = π (mod 2 π )) Roberto Bondesan Edge states at SQH transitions

  8. Motivations The model Solution Conductance and numerics Conclusion Edge states and the θ -angle • Bulk-boundary σ L σ R #(edge states) = σ R − σ L • Edge states as θ increased • 1D QED: quark-antiquark screen F ∝ θ [Coleman ’75, Affleck ’85] • Boundary properties dep. on exact value θ [Xiong,Read,Stone ’97] Aim of the talk Edge states for SQHE Roberto Bondesan Edge states at SQH transitions

  9. Motivations The model Solution Conductance and numerics Conclusion Edge states and the θ -angle • Bulk-boundary σ L σ R #(edge states) = σ R − σ L • Edge states as θ increased • 1D QED: quark-antiquark screen F ∝ θ [Coleman ’75, Affleck ’85] • Boundary properties dep. on exact value θ [Xiong,Read,Stone ’97] Aim of the talk Edge states for SQHE Roberto Bondesan Edge states at SQH transitions

  10. Motivations The model Solution Conductance and numerics Conclusion Network models: quantum percolation • Chalker-Coddington model [Chalker,Coddington ’88] : + + − − − + + � √ 1 − t 2 � t • , √ : S = 1 − t 2 − t A B ⇒ U e , e ′ = S e ′ , e U e , U e ∈ U (1) Roberto Bondesan Edge states at SQH transitions

  11. Motivations The model Solution Conductance and numerics Conclusion Edge states in CC model • Extreme limits 1 t c = √ t = 0: QH state ν = 1 t = 1: Insulator 2 • Higher plateaus: chiral extra edge channels [BGJOS ’12] : Roberto Bondesan Edge states at SQH transitions

  12. Motivations The model Solution Conductance and numerics Conclusion Edge states in CC model • Extreme limits 1 t c = √ t = 0: QH state ν = 1 t = 1: Insulator 2 • Higher plateaus: chiral extra edge channels [BGJOS ’12] : Roberto Bondesan Edge states at SQH transitions

  13. Motivations The model Solution Conductance and numerics Conclusion Network model SQHE with edge channels • U e ∈ SU (2) � � � 1 − t 2 • , , , t x : S x = 1 ⊗ x � 1 − t 2 − t x x A B L R • L = m , R = n : m n 2 L Roberto Bondesan Edge states at SQH transitions

  14. Motivations The model Solution Conductance and numerics Conclusion Network model SQHE with edge channels • U e ∈ SU (2) � � � 1 − t 2 • , , , t x : S x = 1 ⊗ x � 1 − t 2 − t x x A B L R • L = m , R = − n : m n 2 L Roberto Bondesan Edge states at SQH transitions

  15. Motivations The model Solution Conductance and numerics Conclusion Network model SQHE with edge channels • U e ∈ SU (2) � � � 1 − t 2 • , , , t x : S x = 1 ⊗ x � 1 − t 2 − t x x A B L R • L = − m , R = n : m n 2 L Roberto Bondesan Edge states at SQH transitions

  16. Motivations The model Solution Conductance and numerics Conclusion Network model SQHE with edge channels • U e ∈ SU (2) � � � 1 − t 2 • , , , t x : S x = 1 ⊗ x � 1 − t 2 − t x x A B L R • L = − m , R = − n : m n 2 L Roberto Bondesan Edge states at SQH transitions

  17. Motivations The model Solution Conductance and numerics Conclusion Disorder average I [Gruzberg,Read,Ludwig ’99,Beamond,Cardy,Chalker ’02,Mirlin,Evers,Mildenberger ’03,Cardy ’04] • G ( e , e ′ , z ) = � e | (1 − z U ) − 1 | e ′ � = � γ ( e , e ′ ) · · · zU e j s j · · · • SUSY path integral • x σ ( e ) , η σ ( e ) , σ = ↑ , ↓ • Lattice action: W [ x , η ] = zx ∗ ( e ′ ) U e ′ , e x ( e ) + z η ∗ ( e ′ ) U e ′ , e η ( e ) • �•� = � D µ ( x , η ) • exp( W [ x , η ]) ⇒ G ( e , e ′ , z ) = � x ( e ) x ∗ ( e ′ ) � Roberto Bondesan Edge states at SQH transitions

  18. Motivations The model Solution Conductance and numerics Conclusion Disorder average II d U = projects S ( C 2 ⊗ C 1 | 1 ) onto SU(2)-inv. : � 1 � � 1 Truncation: Ψ = 1 , 2 ( x ↑ η ↓ − x ↓ η ↑ ) , η ↑ η ↓ √ 2 Dilute-dense mapping: e ′ e 2 1 : e ′ e 1 2 i ( e ′ � � � j Ψ ∗ � i Ψ α ′ i ) δ α 1 ,α ′ 1 δ α 2 ,α ′ 2 S 11 S 22 − δ α 1 ,α ′ 2 δ α 2 ,α ′ 1 S 12 S 21 α j ( e j ) • Example: Ψ = 1: (1 − t 2 ) + t 2 = 1 • IQH: U(1)-inv. is infinite-dim. space, but [Ikhlef,Fendley,Cardy ’11] Roberto Bondesan Edge states at SQH transitions

  19. Motivations The model Solution Conductance and numerics Conclusion Disorder average II d U = projects S ( C 2 ⊗ C 1 | 1 ) onto SU(2)-inv. : � 1 � � 1 Truncation: Ψ = 1 , 2 ( x ↑ η ↓ − x ↓ η ↑ ) , η ↑ η ↓ √ 2 Dilute-dense mapping: e ′ e 2 1 : e ′ e 1 2 i ( e ′ � � � j Ψ ∗ � i Ψ α ′ i ) δ α 1 ,α ′ 1 δ α 2 ,α ′ 2 S 11 S 22 − δ α 1 ,α ′ 2 δ α 2 ,α ′ 1 S 12 S 21 α j ( e j ) • Example: Ψ = 1: (1 − t 2 ) + t 2 = 1 • IQH: U(1)-inv. is infinite-dim. space, but [Ikhlef,Fendley,Cardy ’11] Roberto Bondesan Edge states at SQH transitions

  20. Motivations The model Solution Conductance and numerics Conclusion New geometrical model ⇒ Classical loops (fug. = 1): • Decomposition: = (1 − t 2 + t 2 A ) A A = (1 − t 2 + t 2 B ) B B = (1 − t 2 + t 2 L ) L L = (1 − t 2 + t 2 R ) R R Roberto Bondesan Edge states at SQH transitions

  21. Motivations The model Solution Conductance and numerics Conclusion New geometrical model ⇒ Classical loops (fug. = 1): • Decomposition: = (1 − t 2 + t 2 A ) A A = (1 − t 2 + t 2 B ) B B = (1 − t 2 + t 2 L ) L L = (1 − t 2 + t 2 R ) R R Roberto Bondesan Edge states at SQH transitions

  22. Motivations The model Solution Conductance and numerics Conclusion Conductance • Landauer: PCC g = Tr tt † , t = � e out | (1 − U ) − 1 | e in � • No replicas: g = 2 � η ↓ ( e out ) η ↑ ( e out ) η ∗ ↑ ( e in ) η ∗ ↓ ( e in ) � = 2 P ( e in , e out ) e ′ ∈ C out P ( e , e ′ ) g = 2 � � ⇒ e ∈ C in ⇒ Loops ≡ transport What next: Solve loop model, then go back to SQH. Roberto Bondesan Edge states at SQH transitions

  23. Motivations The model Solution Conductance and numerics Conclusion Conductance • Landauer: PCC g = Tr tt † , t = � e out | (1 − U ) − 1 | e in � • No replicas: g = 2 � η ↓ ( e out ) η ↑ ( e out ) η ∗ ↑ ( e in ) η ∗ ↓ ( e in ) � = 2 P ( e in , e out ) e ′ ∈ C out P ( e , e ′ ) g = 2 � � ⇒ e ∈ C in ⇒ Loops ≡ transport What next: Solve loop model, then go back to SQH. Roberto Bondesan Edge states at SQH transitions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend