econometrics 1 iv gmm and mle
play

Econometrics 1: IV, GMM and MLE James A. Duffy 1 Oxford, Michaelmas - PDF document

Econometrics 1: IV, GMM and MLE James A. Duffy 1 Oxford, Michaelmas 2016 (revised: 28/12/16) 1 I thank N. Geesing, L. Freund, K. Kuske, and E. Munro for comments. The manuscript was prepared with L YX 2.2.2. Contents 1 Instrumental variables


  1. Econometrics 1: IV, GMM and MLE James A. Duffy 1 Oxford, Michaelmas 2016 (revised: 28/12/16) 1 I thank N. Geesing, L. Freund, K. Kuske, and E. Munro for comments. The manuscript was prepared with L YX 2.2.2.

  2. Contents 1 Instrumental variables 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Rank and order conditions . . . . . . . . . . . . . . . . . . . . . 1 1.2.2 A restatement of the rank condition . . . . . . . . . . . . . . . . 3 1.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3.1 From identification to estimation . . . . . . . . . . . . . . . . . 3 1.3.2 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 The ‘exclusion restriction’ . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Another way of computing the 2SLS estimator . . . . . . . . . . . . . . 10 1.6 Testing exogeneity of the endogenous regressors (Hausman test) . . . . . 11 1.7 Testing the identifying conditions . . . . . . . . . . . . . . . . . . . . . . 12 1.7.1 Tests of overidentifying restrictions (Sargan test) . . . . . . . . . 13 1.7.2 Testing the rank condition . . . . . . . . . . . . . . . . . . . . . 15 1.8 Weak instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.8.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.8.2 Dealing with weak instruments . . . . . . . . . . . . . . . . . . . 19 1.8.3 The Anderson–Rubin (AR) test . . . . . . . . . . . . . . . . . . 20 1.A Suggested (optional) further reading . . . . . . . . . . . . . . . . . . . . 21 2 Generalised method of moments 23 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.1 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 A general framework . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.2 Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 Local identification and weak identification . . . . . . . . . . . . 31 2.3 Asymptotic efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 The choice of weight matrix . . . . . . . . . . . . . . . . . . . . 32 2.3.2 The implied (efficient) choice of moments . . . . . . . . . . . . . 33 2.3.3 Efficiency in the linear IV model . . . . . . . . . . . . . . . . . . 34 2.4 Tests of over-identifying restrictions . . . . . . . . . . . . . . . . . . . . 35 2.5 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.1 Tests of nonlinear restrictions and the delta method . . . . . . . 38 2.5.2 GMM criterion-based tests (QLR tests) . . . . . . . . . . . . . . 41 i

  3. 2.A Suggested (optional) further reading . . . . . . . . . . . . . . . . . . . . 43 3 Maximum likelihood 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.1 Parametric and semiparametric estimation . . . . . . . . . . . . . 45 3.1.2 The likelihood function: the general case . . . . . . . . . . . . . 46 3.1.3 The likelihood function: with i.i.d. data . . . . . . . . . . . . . . 47 3.2 Univariate examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Continuous random variables . . . . . . . . . . . . . . . . . . . . 48 3.2.2 Discrete random variables . . . . . . . . . . . . . . . . . . . . . 50 3.2.3 Mixed continuous/discrete random variables . . . . . . . . . . . . 52 3.3 Models with covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Consistency and identification . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Identification via Kullback–Leibler minimisation . . . . . . . . . . 60 3.5 Asymptotic distribution of the MLE . . . . . . . . . . . . . . . . . . . . 62 3.5.1 Asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5.2 Efficiency properties . . . . . . . . . . . . . . . . . . . . . . . . 64 3.6 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.A Suggested (optional) further reading . . . . . . . . . . . . . . . . . . . . 67 4 References 69 A Mathematical appendix 71 A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.3 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.3.1 Modes of stochastic convergence . . . . . . . . . . . . . . . . . 73 A.3.2 Key results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.4 Suggested (optional) further reading . . . . . . . . . . . . . . . . . . . . 75 ii

  4. ECONOMETRICS 1, MT 2016 20/04/17 J. A. DUFFY 1 Instrumental variables • Throughout these notes, all variables are i.i.d. unless otherwise stated. 1.1 Introduction • We would like to estimate the parameters β 0 ∈ R d x in y i = x T i β 0 + u i (1.1) (here, as throughout, a ‘ 0 ’ subscript denotes the true value of a parameter). – For various reasons – due to omitted variables, measurement error, unobservable heterogeneity and the like – the usual identifying orthogonality condition E x i u i = 0 may not be considered plausible. – Those elements of x i for which this condition fails are said to be endogenous . • Instead, identification will be achieved by means of the instruments z i , which are assumed to fulfil this same orthogonality condition, IV-ORTH E z i u i = 0 . (Note that x i and z i may share some common elements, but they cannot overlap entirely, for obvious reasons) 1.2 Identification 1.2.1 Rank and order conditions • A parameter is identified if it is uniquely determined from the joint distribution of the data, w i = ( y i , x i , z i ) . (At least in i.i.d. settings, in which the joint distribution can always be consistently estimated, this is equivalent to asking whether the parameter can be consistently estimated.) • Identification of β 0 will follow if the equation 0 = E ( y i − x T i β ) z i = E z i y i − E z i x T i β (1.2) has a unique solution at β = β 0 . The r.h.s. depends only on β and the distribution of w i , through the moments E y i z i and E z i x T i . 1

  5. • To show that β 0 indeed solves (1.2), rewrite as 0 = (1) E ( x T i β 0 + u i − x T i β ) z i = (2) E z i x T i ( β 0 − β ) , (1.3) where = (1) follows by (1.1), and = (2) by IV-ORTH . • Is β = β 0 the only solution to (1.3)? Since E z i x T i is a d z × d x matrix, the equation [ E z i x T i ] δ = 0 admits a solution at some δ � = 0 if and only if rk E z i x T i < d x (see Appendix A.2). In this case, there will be other β ’s, distinct from β 0 , for which (1.3) holds. • A necessary and sufficient condition for identification is thus IV-RANK rk E z i x T i = d x , termed the rank condition (or somewhat more informally, the relevance condition ). – A necessary, but not sufficient condition for the rank condition is that d z ≥ d x , termed the order condition . In other words, there must be at least as many instruments as there are regressors. – The model is said to be exactly identified when d z = d x – i.e. when we have just enough instruments to identify β 0 – and overidentified when d z > d x ; in the latter case, we can test for some violations of IV-ORTH . • In the overidentified case, we have strictly more instruments than are needed to identify β 0 ; and in consequence, the number of such instruments may be reduced, down to d x , without prejudicing identification. • More formally, for some d x × d z matrix L , consider the d x new ‘instruments’ z L,i := Lz i formed by taking d x linear combinations of the original instruments. – z L,i clearly satisfy the required orthogonality condition, since by IV-ORTH 0 = L E z i u i = E z L,i u i . – Similarly, premultiplying (1.2) by L yields the identifying condition 0 = E z L,i y i − E z L,i x T ⇒ 0 = E z L,i x T i β ⇐ i ( β 0 − β ) where the equivalence follows via exactly the same reasoning as which led from (1.2) to (1.3) above. 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend