dynamics of bose einstein condensates
play

Dynamics of Bose Einstein Condensates Benjamin Schlein, University - PowerPoint PPT Presentation

Dynamics of Bose Einstein Condensates Benjamin Schlein, University of Zurich Quantissima in the Serenissima, Venezia August 21, 2017 Based on joint work with Christian Brennecke 1 I. The Gross-Pitaevskii Limit Hamiltonian : consider N bosons


  1. Dynamics of Bose Einstein Condensates Benjamin Schlein, University of Zurich Quantissima in the Serenissima, Venezia August 21, 2017 Based on joint work with Christian Brennecke 1

  2. I. The Gross-Pitaevskii Limit Hamiltonian : consider N bosons described by N N � � � � H trap N 2 V ( N ( x i − x j )) = − ∆ x j + V ext ( x j ) + N j =1 i<j with V ext confining and V ≥ 0, regular, radial, short range. Scattering length : defined by zero-energy scattering equation � � − ∆ + 1 2 V ( x ) f ( x ) = 0 , f ( x ) → 1 For | x | large, f ( x ) = 1 − a 0 ⇒ a 0 = scattering length of V | x | By scaling � � − ∆ + N 2 a 0 N = scatt. length of N 2 V ( N. ) 2 V ( Nx ) f ( Nx ) = 0 ⇒ 2

  3. Ground state energy : [ Lieb-Seiringer-Yngvason, ’00 ] proved E N lim N = min E GP ( x ) N →∞ ϕ ∈ L 2 ( R 3 ): � ϕ � =1 with Gross-Pitaevskii energy functional � � |∇ ϕ | 2 + V ext | ϕ | 2 + 4 πa 0 | ϕ | 4 � E GP ( ϕ ) = dx Bose-Einstein condensation: [ Lieb-Seiringer, ’02 ] showed γ (1) → | ϕ 0 �� ϕ 0 | N where ϕ 0 minimizes E GP . Warning : this does not mean that ψ N ≃ ϕ ⊗ N . In fact 0 � � � � � � 1 V (0) |∇ ϕ 0 | 2 + V ext | ϕ 0 | 2 + ϕ ⊗ N , H N ϕ ⊗ N | ϕ 0 | 4 ≃ dx 0 0 N 2 Correlations are crucial! 3

  4. II. Time-evolution of BEC Theorem [Brennecke - S., ’17]: Let ψ N ∈ L 2 s ( R 3 N ) such that  := 1 − � ϕ 0 , γ (1)  a N N ϕ 0 � → 0   as N → ∞ � �   � � N � ψ N , H trap � 1  := ψ N � − E GP ( ϕ 0 ) � → 0 b N N Let N N � � N 2 V ( N ( x i − x j )) − ∆ x j + H N = j =1 i<j and ψ N,t = e − iH N t ψ N . Then, for all t ∈ R , 1 − � ϕ t , γ (1) N,t ϕ t � ≤ C ( a N + b N + N − 1 ) exp( c exp( c | t | )) where ϕ t solves time-dependent Gross-Pitaevskii equation i∂ t ϕ t = − ∆ ϕ t + 8 πa 0 | ϕ t | 2 ϕ t with initial data ϕ t =0 = ϕ 0 . 4

  5. Remark: result immediately implies � � � � � γ (1) � ≤ C ( a N + b N + N − 1 ) 1 / 2 exp( c exp( c | t | )) � � N,t − | ϕ t �� ϕ t | Tr Remark: if ψ N is ground state of trapped systems we expect (in some cases, we know; see next talk) that a N , b N ≃ N − 1 . Alternative statement: let ψ N ∈ L 2 s ( R 3 N ), ϕ ∈ L 2 ( R 3 ) s.t.  � � � �  � γ (1)  � �  a N := Tr − | ϕ �� ϕ | � → 0  N � � � � |∇ ϕ | 2 + 4 πa 0 | ϕ | 4 � 1 � �   � �  N � ψ N , H N ψ N � − � → 0 b N := dx  � Let ψ N,t = e − iH N t ψ N . Then 1 − � ϕ t γ (1) N,t ϕ t � ≤ C ( a N + b N + N − 1 ) exp( c exp( c | t | )) where ϕ t solves GP equation with data ϕ t =0 = ϕ . 5

  6. Previous works: [ Erd˝ os-S.-Yau, ’06-’08 ]: BBGKY approach, no rate. Simpli- fication of parts of proof due to [ Klainerman-Machedon ’07 ], [ Chen-Hainzl-Pavlovic-Seiringer, ’13 ]. [ Pickl, ’10 ]: alternative approach, uncontrolled rate. [ Benedikter-de Oliveira-S. ’12 ]: precise bounds on rate, ap- proximately coherent initial data in Fock space. Related results on mean-field dynamics, among others by Adami, Ammari, Bardos, Breteaux, T. Chen, X. Chen, Erd˝ os, Falconi, Fr¨ ohlich, Ginibre, Golse, Grillakis, Hepp, Holmer, Kirkpatrik, Knowles, Kuz, Lewin, Liard, Machedon, Margetis, Mauser, Mitrouskas, Nam, Napiorkowski, Nier, Pavlovic, Pawilowski, Petrat, Pickl, Pizzo, Rodnianski, Rougerie, S., Spohn, Staffilani, Teta, Velo, Yau 6

  7. III. Ideas from the proof for ψ N ∈ L 2 s ( R 3 N ) and ϕ ∈ L 2 ( R 3 ), Orthogonal excitations: write ψ N = α 0 ϕ ⊗ N + α 1 ⊗ s ϕ ⊗ ( N − 1) + α 2 ⊗ s ϕ ⊗ ( N − 2) + · · · + α N where α j ∈ L 2 ⊥ ϕ ( R 3 ) ⊗ s j . As in [ Lewin-Nam-Serfaty-Solovej, ’12 ], [ Lewin-Nam-S. ’15 ], we define the unitary map N � s ( R 3 N ) → F ≤ N U ϕ : L 2 L 2 ⊥ ϕ ( R 3 ) ⊗ s j ⊥ ϕ = j =0 ψ N → Uψ N = { α 0 , α 1 , . . . , α N } Remark : ψ N = U ∗ ϕ ξ N exhibits BEC in ϕ ∈ L 2 ( R 3 ) if and only if ξ N ∈ F ≤ N ⊥ ϕ has small number of particles. 7

  8. ξ N,t ∈ F ≤ N Evolution of BEC : define excitation vector � ⊥ ϕ t through e − iH N t U ∗ ϕ 0 ξ N = U ∗ � ξ N,t ϕ t In other words, ξ N,t = � � W N,t ξ N with fluctuation dynamics W N,t = U ϕ t e − iH N t U ∗ ϕ 0 : F ≤ N ⊥ ϕ 0 → F ≤ N � ⊥ ϕ t Need to show W ∗ � � ξ N,t , N � ξ N,t � = � ξ N , � N,t N � W N,t ξ N � ≤ C t Problem : we are neglecting correlations ! Need to modify fluctuation dynamics! 8

  9. Idea from [Benedikter-de Oliveira-S. ’12] : interested in evo- lution of approximately coherent initial data : e − i H N t W 0 ξ N = W t � with W t = Weyl operator ξ N,t , Describe correlations through Bogoliubov transformations � 1 �� � � η t ( x ; y ) a ∗ x a ∗ � T t = exp dxdy y − h.c. 2 Define modified excitation vector ξ N,t through e − i H N t W 0 � T 0 ξ N = W t � T t ξ N,t With choice w = 1 − f and � � a 0 η t ( x ; y ) = − Nw ( N ( x − y )) ϕ t ( x ) ϕ t ( y ) ≃ − | x − y | ϕ t ( x ) ϕ t ( y ) � in was possible to show that � ξ N,t , N ξ N,t � ≤ C t . 9

  10. Goal : apply similar idea for N -particles data. Problem : Bogoliubov transf. do not leave F ≤ N ⊥ ϕ t invariant. Modified fields : on F ≤ N ⊥ ϕ t , we define, for f ∈ L 2 ⊥ ϕ t ( R 3 ), � � N − N N − N b ∗ ( f ) = a ∗ ( f ) , b ( f ) = a ( f ) N N Remark ϕ t b ∗ ( f ) U ϕ t = a ∗ ( f ) a ( ϕ t ) U ∗ √ N Generalized Bogoliubov transformations : define � 1 �� � � η t ( x ; y ) b ∗ x b ∗ y − h.c. T t = exp dxdy 2 Then T t : F ≤ N ⊥ ϕ t → F ≤ N ⊥ ϕ t , if η t orthogonal to ϕ t in both variables. 10

  11. Modified fluctuation dynamics : let t U ϕ t e − iH N t U ∗ ϕ 0 T 0 : F ≤ N ⊥ ϕ 0 → F ≤ N W N,t = T ∗ ⊥ ϕ t Generator : define G N,t such that i∂ t W N,t = G N,t W N,t We have � � G N,t = ( i∂T ∗ t ) T t + T ∗ ( i∂ t U ϕ t ) U ∗ ϕ t + U ϕ t H N U ∗ T t t ϕ t The contribution ( i∂ t T ∗ t ) T t is harmless. We focus on the second term. Using rules U ϕ t a ∗ ( f ) a ( g ) U ∗ ϕ t = a ∗ ( f ) a ( g ) U ϕ t a ∗ ( ϕ t ) a ( ϕ t ) U ∗ ϕ t = N − N √ √ U ϕ t a ∗ ( f ) a ( ϕ t ) U ∗ ϕ t = a ∗ ( f ) N b ∗ ( f ) N − N = √ √ U ϕ t a ∗ ( ϕ t ) a ( f ) U ∗ ϕ t = N − N a ( f ) = N b ( f ) 11

  12. we find 4 � L ( j ) ( i∂ t U ϕ t ) U ∗ ϕ t + U ϕ t H N U ∗ ϕ t = N,t j =1 with (roughly) √ L (1) N b (( N 3 V ( N. ) w ( N. ) ∗ | ϕ t | 2 ) ϕ t ) + h.c. N,t = � � � N 3 V ( N. ) ∗ | ϕ t | 2 � L (2) ∇ x a ∗ ( x ) b ∗ N,t = x ∇ x a x + dx x b x � ϕ t ( y ) b ∗ dxdyN 3 V ( N ( x − y )) ϕ t ( x )¯ + x b y � � � + 1 dxdyN 3 V ( N ( x − y )) ϕ t ( x ) ϕ t ( y ) b ∗ x b ∗ y + h.c. 2 � � � L (3) ϕ t ( y ) b ∗ x a ∗ dxdyN 5 / 2 V ( N ( x − y )) N,t = y a x + h.c. � N,t = 1 L (4) dxdyN 2 V ( N ( x − y )) a ∗ x a ∗ y a y a x 2

  13. We find G N,t = C N,t + H N + E N,t with � � x ∇ x a x + 1 ∇ x a ∗ dxdy N 2 V ( N ( x − y )) a ∗ x a ∗ H N = y a y a x 2 and, for any δ > 0, a C > 0 s.t. ± E N,t ≤ δ H N + C ( N + 1) � � ± i N , E N,t ≤ δ H N + C ( N + 1) ± ˙ E N,t ≤ δ H N + C ( N + 1) 12

  14. Control of N : by Gronwall , we conclude � ξ N , W ∗ N,t N W N,t ξ N � ≤ C t � ξ N , ( N + H N ) ξ N � With assumptions on initial data, theorem follows. � Main challenge : action of Bogoliubov transf. T t is explicit, i.e. T t a ∗ ( f ) � T t = a ∗ (cosh η t ( f )) + a (sinh η t ( ¯ � f )) For generalized Bogoliubov transformations, no explicit formula is available. Instead, we have to expand � 1 T ∗ t a ∗ ( f ) T t = n ! ad ( n ) ( a ∗ ( f )) n ≥ 0 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend