driven abc model under particle nonconserving dynamics
play

Driven ABC model under particle-nonconserving dynamics Or Cohen and - PowerPoint PPT Presentation

Driven ABC model under particle-nonconserving dynamics Or Cohen and David Mukamel International Seminar on Large Fluctuations in Non-Equilibrium Systems, Dresden, July 2011 Motivation Equilibrium systems with System driven out of Long-range


  1. Driven ABC model under particle-nonconserving dynamics Or Cohen and David Mukamel International Seminar on Large Fluctuations in Non-Equilibrium Systems, Dresden, July 2011

  2. Motivation Equilibrium systems with System driven out of Long-range interactions equilibrium GMm  v ( r ) T 2 r T 1 • • Much is known Much remains unknown • • Exhibit long-range correlations Exhibit long-range correlations • • Exhibit unique phenomena : Exhibit similar phenomena ? inequivalence of ensembles, negative specific heat in MC ensemble, slow relaxation, quasi-stationary states

  3. Outline 1. Long-range interactions Equilibrium Long-range 2. Inequivalence of ensembles 3. ABC model Driven Models 4. Inequivalence of ensembles 5. Conclusions

  4. Long-range interactions 1 r  v ( r )   d r Long range Short range σ >0 Energy 1   E   / d V E V scaling YES NO Additive S S Micro- C V <0 C V ≥ 0 C V <0 canonical E E E E E E 1 1 2 2 C V ≥ 0 C V ≥ 0 Canonical

  5. Inequivalence of ensembles Microcanonical Canonical T T disordered disordered ordered ordered C V <0 K K T K = interaction strength disordered 1 st order transition 2 nd order transition ordered inequivalence K

  6. Outline 1. Long-range interactions Equilibrium Long-range 2. Inequivalence of ensembles 3. ABC model Driven Models 4. Inequivalence of ensembles 5. Conclusions

  7. ABC model Ring of size L Dynamics : q AB BA 1 q BC CB 1 q CA AC 1 B C A q=1 ABBCACCBACABACB   L q<1 AAAAABBBBBCCCCC Evans, Kafri , Koduvely & Mukamel - Phys. Rev. Lett. 1998

  8. Currents & Detailed Balance 1. Equal densities N A =N B =N C Although q ≠ 1 detailed balance obeyed with respect with to  L L 1   k     2 H ({ X }) A B B C C A ~ L    i i i k i i k i i k L   i 1 k 1  H ({ X }) P ({ X }) q i i 2. Nonequal densities, e.g. N B ≠ N C No effective Hamiltonian

  9. Weak asymmetry  2 E ~ L   q exp( ) L S ~ L          E S E L / L f ( ) P E ( ) ( ) E q e e Clincy, Derrida & Evans - Phys. Rev. E 2003

  10. Weak asymmetry  2 E ~ L   q exp( ) L S ~ L          E S E L / L f ( ) P E ( ) ( ) E q e e 2 nd order phase transiton  c    2 3 10 . 9 at the critical temp. Clincy, Derrida & Evans - Phys. Rev. E 2003

  11. Outline 1. Long-range interactions Equilibrium Long-range 2. Inequivalence of ensembles 3. ABC model Driven Models 4. Inequivalence of ensembles 5. Conclusions

  12. ABC model + vacancies ‘Canonical’ ensemble : 1 0X X0 X=A,B,C 1 C A B 0 Lederhendler & Mukamel - Phys. Rev. Lett. 2010

  13. Nonconserving dynamics ‘Grand Canonical’ ensemble : 1 0X X0 X=A,B,C 1 pe -3 βμ ABC 000 p A B C 0 Fluctuating parameter : Conjugate field :    N N N  A B C r L Lederhendler & Mukamel - Phys. Rev. Lett. 2010

  14. Inequivalence of ensembles For N A =N B =N C : Conserving = Nonconserving = Canonical Grand canonical disordered disordered T= T= ordered ordered 1 st order transition 2 nd order transition tricritical point Lederhendler, Cohen & Mukamel - J. Stat. Mech: Theory Exp. 2010

  15. Nonequal densities Hydrodynamics equations : i    ( ) A A B A B   A i i i 1 i i 1 L Drift Diffusion Deposition Evaporation         d 1 d d               3 3 A A p e    A B C  0 A B C 2 dt L dx dx

  16. Nonequal densities Hydrodynamics equations : i    ( ) A A B A B   A i i i 1 i i 1 L Drift Diffusion Deposition Evaporation         d 1 d d               3 3 A A p e    A B C  0 A B C 2 dt L dx dx e - β /L AB BA 1 pe -3 βμ e - β /L 1 ABC 000 BC CB 0X X0 1 1 p e - β /L X= A,B,C CA AC 1

  17. Conserving steady-state Drift Diffusion       d 1 d   d               3 3 A A p e   A B C 0 A B C   2 dt L dx dx  p 0 Conserving model Steady-state profile      1 sn c x , d      * ( x , r ) r       a b sn c x , d        N N N  A B C r L Nonequal densities : Cohen & Mukamel - Preprint Equal densities : Ayyer et al. - J. Stat. Phys. 2009

  18. Nonconserving steady-state Drift Diffusion Deposition Evaporation       d 1 d   d               3 3 A A p e   A B C 0 A B C   2 dt L dx dx

  19. Nonconserving steady-state       d 1 d   d               3 3 A A p e   A B C 0 A B C   2 dt L dx dx Drift + Diffusion Deposition + Evaporation Nonconserving model     p ~ L , 2 with slow nonconserving dynamics Steady-state density Steady-state profile   r ? * ( x , r )   

  20. Dynamics of particle density       2 1 ~ L ~ L 2 1 2    ( x ) ( x ) ( x ) A B C r  r 1

  21. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 1  * ( x , r )  1

  22. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 2 : r  r 2

  23. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 2  * ( x , r )  2

  24. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 2 : r  r 3

  25. Dynamics of particle density       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 3  * ( x , r )  3

  26. Large deviation function of r       2 1 ~ L ~ L 2 1 2 After time τ 1 : r  r 3  * ( x , r )  3  3 3 *     ( x , r ) R ( r r ) , R ( r r )  3 4 3 4 3 L L

  27. Large deviation function of r R  ( r ) V ( r ) R  ( r ) r r r r  min max = 1D - Random walk in a potential

  28. Large deviation function of r R  ( r ) V ( r ) R  ( r ) r r r r  min max = 1D - Random walk in a potential r R ( r ' )     P ( r ) exp[ LF ( r )]   R ( r ' ) r ' r  0   1     3 * 3   e dx ( ) 0 r Large pe -3 βμ     0 F ( r ) dr ' log ABC 000 deviation    1 function  p     * * *  r dx 0 A B C   0

  29. Inequivalence of ensembles r r For N A =N B ≠ N C :          r r , r 2 0 . 01 A B C 3 3 Conserving = Nonconserving = Canonical Grand canonical disordered disordered ordered ordered 1 st order transition 2 nd order transition tricritical point

  30. Locating 1 st order transition Large deviation function ‘Chemical potential’ in conserving system   r 1 1               * * * * 3   F ( r ) dr ' ( ( r ' )) ( r ' ) log dx ( ( ) )   A B C 0 3   r 0 0 Conserving Nonconserving 2 nd order trans. 1 st order trans. Maxwell’s μ μ Critical point construction Ordered phase  F ( r ) F ( r )   1 2 Homogenous phase r r r r 1 2

  31. Fast evaporation & deposition     p ~ L 2 Conserving Nonconserving   1   x  Flat vacancies ( x ) r Oscillatory vacancies ( ) const profile 0 0 profile d         No moving ( x ) 0 Moving ( x , ) ( x v )     solutions d solutions   2 3 2 3     c  c   1 2 2     r 36 2 2 2 2 r ( 1 k ) 36 ( 1 k ) 1 1 r 2 NESS is sensitive to the dynamics

  32. Results & Conclusions 1. Inequivalence of ensembles in the ABC model Open questions : Other similarities to system with LRI ? (dynamical features etc.) In other driven models ? 2. Dynamical definition of ensembles in driven models ? Conserving ABC model + slow nonconserving dynamics Obtain LDF of particle density Applies to other driven models

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend