abc l the uniform abc conjecture and zeros of dirichlet l
play

ABC...L: The uniform abc -conjecture and zeros of Dirichlet L - PowerPoint PPT Presentation

ABC...L: The uniform abc -conjecture and zeros of Dirichlet L -functions Christian T afula (RIMS, Kyoto University) 2nd KyotoHefei Workshop, August 2020 T afula, C. (RIMS, Kyoto U) ABC...L


  1. ABC...L: The uniform abc -conjecture and zeros of Dirichlet L -functions Christian T´ afula 京 都 大 学 数 理 解 析 研究 所 (RIMS, Kyoto University) 2nd Kyoto–Hefei Workshop, August 2020 T´ afula, C. (RIMS, Kyoto U) ABC...L Kyoto–Hefei 2020 0 / 45

  2. Contents 1 Review: Zeros of L -functions 2 Statement of the main theorems 3 Isolating the Siegel zero 4 The bridge: KLF and Duke’s Theorem 1 5 Uniform abc = ⇒ 2 “no Siegel zeros” T´ afula, C. (RIMS, Kyoto U) ABC...L Kyoto–Hefei 2020 1 / 45

  3. Contents 1 Review: Zeros of L -functions 2 Statement of the main theorems 3 Isolating the Siegel zero 4 The bridge: KLF and Duke’s Theorem 1 5 Uniform abc = ⇒ 2 “no Siegel zeros” T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 2 / 45

  4. Characters Let q ≥ 1 be an integer. A Dirichlet character χ (mod q ) is a function χ : Z → C ∗ s.t.: χ ( nm ) = χ ( n ) χ ( m ) for every n, m ; χ ( n + q ) = χ ( n ) for every n ; χ ( n ) = 0 if gcd( n, q ) > 1. Alternatively, χ is the lifting of a homeomorphism χ : ( Z /q Z ) × → C ∗ . χ (mod q ) ( Z /q Z ) × C ∗ Primitive: ∄ d | q ( d � = q ) s.t. χ ′ (mod d ) ( Z /d Z ) × � Principal: ( Z /q Z ) × → C ∗ is trivial (i.e., χ 0 ( n ) = 1 , if ( n, q ) = 1 0 , if ( n, q ) > 1 ) ⇒ Quadratic: χ 2 = χ 0 ) ( ⇐ Real: χ = χ Even: χ ( − 1) = 1, Odd: χ ( − 1) = − 1. T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 3 / 45

  5. Real characters � � �� D � � Real primitive , D fundamental ← → Dirichlet characters · discriminant A fundamental discriminant is an integer D ∈ Z s.t.: ∃ K/ Q quadratic | ∆ K = D ; or, equivalently , � D ≡ 1 (mod 4) , D square-free; or D ≡ 0 (mod 4) , s.t. D/ 4 ≡ 2 or 3 (mod 4) and D/ 4 square-free . � D � : Z → {− 1 , 0 , 1 } is The Kronecker symbol · � D �� D � � D � , ∀ m, n ∈ Z ); Completely multiplicative (i.e., = m n mn  √ 1 , ( p ) splits in Q (  D ) � D � � D �  = = sgn( D ). − 1 , ( p ) is inert · · · p  − 1  0 , ( p ) ramifies · · · (i.e., p | D ) � D � , we have χ D (mod | D | ) real, primitive Writing χ D := · T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 4 / 45

  6. L -functions The Dirichlet L -function associated to non-principal χ (mod q ): � � � � χ ( n ) 1 L ( s, χ ) := = , ( ℜ ( s ) > 1) n s 1 − χ ( p ) p − s p n ≥ 1 (E.g.: 1 + z + z 2 + · · · = Analytic continuation: 1 1 − z ) L ( s, χ ) is entire; Functional equation: For a χ := 0 (if χ even) or 1 (if χ odd), 2 ( s + a χ ) Γ( 1 L ∗ ( s, χ ) := ( π/q ) − 1 2 ( s + a χ )) L ( s, χ ) is entire; L ∗ ( s, χ ) = W ( χ ) L ∗ (1 − s, χ ), where | W ( χ ) | = 1. Reflection Critical strip: � 0 , − 2 , − 4 . . . , ( χ even) (Trivial zeros) Poles of Γ( 1 2 ( s + a χ )), i.e.: − 1 , − 3 , − 5 . . . , ( χ odd) (Non-trivial zeros) All other zeros are in { s ∈ C | 0 < ℜ ( s ) < 1 } T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 5 / 45

  7. Anatomy of ζ ( s ) = � n ≥ 1 n − s • • 50 i • • • 40 i • critical strip 0 < ℜ ( s ) < 1 • • 30 i non-trivial • zeros • 20 i critical line ℜ ( s ) = 1 / 2 • 10 i − 6 − 5 − 4 − 3 − 2 − 1 1 2 0 • • • • pole trivial zeros − 10 i • − 20 i • • T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 6 / 45

  8. Classical (quasi) zero-free regions t [Gronwall 1913, Landau 1918, Titchmarsh 1933] Write s = σ + it ( σ = ℜ ( s ), t = ℑ ( s )), and let χ (mod q ) be a Dirichlet character. There exists c 0 > 0 such that, in the region � � � σ � c 0 � s ∈ C � σ ≥ 1 − , 1 log q ( | t | + 2) 0 1 2 the function L ( s, χ ) has: ( χ complex) no zeros; ( χ real) at most one zero, which is necessarily real and simple – the so-called Siegel zero . T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 7 / 45

  9. q -aspect vs. t -aspect c 0 t -aspect σ < 1 − log q ( | t | + 2) ⇔ 1 1 − σ ≪ log q ( | t | + 2) q -aspect: q → + ∞ , | t | bounded; t c t -aspect: q bounded , e p s a - | t | → + ∞ . q T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 8 / 45

  10. Siegel zeros Let: D ∈ Z be a fundamental discriminant β D the largest real zero of L ( s, χ D ) Conjecture (“no Siegel zeros”) 1 ≪ log | D | 1 − β D Remark. Imprimitive case follows from primitive case. (Siegel, 1935) For every ε > 0, it holds that Ineffective! � � � 1 1 2 − ε , √ D ) ≫ | D | h Q ( for D < 0 ≪ | D | ε ⇐ ⇒ 1 2 − ε , for D > 0 1 − β D h Q ( √ D ) log η D ≫ D 1 − β D = 1 1 1 (GRH + Chowla) 2 (if D < 0), 1 − β D = 1 (if D > 0). T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 9 / 45

  11. In summary (1/5) Siegel zeros are... t about real primitive characters χ exceptional = ⇒ χ = χ D Exceptional := violates (q-)ZFR by at most one (real, simple) zero a q -aspect problem σ Box of height 1 ( | t | ≤ 1) 1 0 1 2 Zeros “very close” to s = 1 related to quadratic fields √ → Q ( χ D ← D ) √ β D ← → h Q ( D ) T´ afula, C. (RIMS, Kyoto U) 1. Review of L -functions Kyoto–Hefei 2020 10 / 45

  12. Contents 1 Review: Zeros of L -functions 2 Statement of the main theorems 3 Isolating the Siegel zero 4 The bridge: KLF and Duke’s Theorem 1 5 Uniform abc = ⇒ 2 “no Siegel zeros” T´ afula, C. (RIMS, Kyoto U) 2. Theorems Kyoto–Hefei 2020 11 / 45

  13. 1 Uniform abc = ⇒ 2 “no Siegel zeros” Theorem (Granville–Stark, 2000) “No Siegel zeros” for Uniform abc -conj. = ⇒ χ D (mod | D | ) , D < 0 ht( j ( τ D )) Uniform abc -conj. = ⇒ lim sup ≤ 3 log | D | D →−∞ ⇒ A. Granville L ′ L (1 , χ D ) lim sup < + ∞ log | D | D →−∞ ⇔ δ ( 1 ∃ δ > 0 | β D < 1 − 2 “No Siegel zeros”) log | D | L ′ 1 ← → ← → L (1 , χ D ) ht( j ( τ D )) 1 − β D H. Stark Key to the bridge! T´ afula, C. (RIMS, Kyoto U) 2. Theorems Kyoto–Hefei 2020 12 / 45

  14. Uniform abc -conjecture (1/2) Let K/ Q be a NF, M K its places, M non ⊆ M K non-arch. places K For a point P = [ x 0 : · · · : x n ] ∈ P n K , define: (log) conductor N K ( P ) (na¨ ıve, abs, log) height ht( P ) � � � � 1 1 f v log( p v ) log max i {� x i � v } [ K : Q ] [ K : Q ] v ∈M non v ∈M K K ∃ i,j ≤ n s . t . v ( x i ) � = v ( x j ) For a, b, c ∈ Z coprime, ↔  v ∼ p = p v   ht([ a : b : c ]) = log max {| a | , | b | , | c |} p v ∼ p v ∩ Q � � �  N Q ([ a : b : c ]) = log p | abc p  f v := [ K v : Q p v ] � 1 log + | α ∗ | α integral ⇒ ht( α ) = For α ∈ Q , ht ( α ) := ht ([ α : 1]). |A| α ∗ ∈A A = { conjugates of α } T´ afula, C. (RIMS, Kyoto U) 2. Theorems Kyoto–Hefei 2020 13 / 45

  15. Uniform abc -conjecture (2/2) abc for number fields Fix K/ Q a number field. Then, for every ε > 0 , there is C ( K, ε ) ∈ R + such that, ∀ a, b, c ∈ K | a + b + c = 0 , we have � � ht([ a : b : c ]) < (1 + ε ) N K ([ a : b : c ]) + log(rd K ) + C ( K, ε ) , where rd K := | ∆ K | 1 / [ K : Q ] is the root-discriminant of K . d ( α ) Hermite: ∆ K bdd. ⇒ # { K } < ∞ Northcott: d ( α ), ht( α ) bdd. ⇒ # { α } < ∞ Uniform abc -conjecture (U- abc ) C ( K, ε ) = C ( ε ) ht( α ) d -aspect Vojta’s general conjecture = ⇒ U- abc vs. height-aspect T´ afula, C. (RIMS, Kyoto U) 2. Theorems Kyoto–Hefei 2020 14 / 45

  16. Singular moduli (1/2) Let τ ∈ h ( ℑ ( τ ) > 0) � � A, B, C ∈ Z , A > 0 , CM-point: τ | Aτ 2 + Bτ + C = 0 gcd( A, B, C ) = 1 , unique Singular modulus: j ( τ ) ( j = j -invariant, τ a CM-point) j : h → C is the unique function s.t.: F is holomorphic; j ( i ) = 1728, j ( e 2 πi/ 3 ) = 0, j ( i ∞ ) = ∞ ; � aτ + b � � a b � 2 πi πi e e ∈ SL 2 ( Z ) . 3 3 j = j ( τ ) , ∀ ◦ • c d cτ + d j ( τ ) = 1 q + 744 + 196884 q + · · · -1 -0.5 0 0.5 1 q -expansion of the j -invariant ( q = e 2 πiτ ) T´ afula, C. (RIMS, Kyoto U) 2. Theorems Kyoto–Hefei 2020 15 / 45

  17. Singular moduli (2/2) Heegner points Λ D Reduced bin. quad. forms of disc. D   ( a, b, c ) := ax 2 + bxy + cy 2 � CM-points τ ∈ F , �   s.t. b 2 − 4 ac = D, and ← → disc( τ ) = D   − a < b ≤ a < c or 0 ≤ b ≤ a = c ∈ ∈ √ √ or − 1 + D D τ D := ↔ Principal form Z [ τ D ] = O Q ( √ 2 2 � �� � D ) ���� � �� � (1 , 0 , − D 4 ) or (1 , 1 , 1 − D ) D ≡ 0(4) D ≡ 1(4) 4 √ Write H D := Hilbert class field of Q ( D ). � � √ √ H D = Q ( D, j ( τ D )) [H D : Q ( D )] = [ Q ( j ( τ D )) : Q ] = h Q ( √ D ) √ { j ( τ ) | τ ∈ Λ D } = Gal( Q / Q ( D ))-conjugates of j ( τ D ) � 1 log + | j ( τ ) | j ( τ D ) is an algebraic integer! ⇒ ht( j ( τ D )) = h Q ( √ D ) τ ∈ Λ D T´ afula, C. (RIMS, Kyoto U) 2. Theorems Kyoto–Hefei 2020 16 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend