draft
play

Draft Computation of frequency responses of PDEs in Chebfun - PowerPoint PPT Presentation

Draft Computation of frequency responses of PDEs in Chebfun Mihailo Jovanovi c www.umn.edu/ mihailo joint work with: Binh K. Lieu 2012 SIAM Annual Meeting Draft M. J OVANOVI C , UMN 1 Example: heat equation Distributed input


  1. Draft Computation of frequency responses of PDEs in Chebfun Mihailo Jovanovi´ c www.umn.edu/ ∼ mihailo joint work with: Binh K. Lieu 2012 SIAM Annual Meeting

  2. Draft M. J OVANOVI ´ C , UMN 1 Example: heat equation • Distributed input and output fields ϕ t ( y, t ) = ϕ yy ( y, t ) + d ( y, t ) ϕ ( y, 0) = 0 ϕ ( ± 1 , t ) = 0 ⋆ Harmonic forcing steady-state response d ( y, t ) = d ( y, ω ) e j ωt ϕ ( y, t ) = ϕ ( y, ω ) e j ωt − − − − − − − − − − − − − − − − − − − → ⋆ Frequency response operator ϕ ( y, ω ) = [ T ( ω ) d ( · , ω ) ] ( y ) (j ωI − ∂ yy ) − 1 d ( · , ω ) � � = ( y ) � 1 = T ker ( y, η ; ω ) d ( η, ω ) d η − 1

  3. Draft M. J OVANOVI ´ C , UMN 2 Two point boundary value realizations of T ( ω ) • Input-output differential equation � ϕ ′′ ( y, ω ) − j ω ϕ ( y, ω ) − d ( y, ω ) = T ( ω ) : ϕ ( ± 1 , ω ) = 0 • Spatial state-space realization � x ′ � 0 � � x 1 ( y, ω )  1 ( y, ω ) � 1 � � 0 � = + d ( y, ω )   − 1  x ′ 2 ( y, ω ) j ω 0 x 2 ( y, ω )   0 � � x 1 ( y, ω )   � 1  �  T ( ω ) : ϕ ( y, ω ) = x 2 ( y, ω )  � � x 1 ( − 1 , ω ) � � x 1 (1 , ω )   � � � �  1 0 0 0   0 = +   0 0 1 0 x 2 ( − 1 , ω ) x 2 (1 , ω ) 

  4. Draft M. J OVANOVI ´ C , UMN 3 Frequency response operator • Evolution equation [ E φ t ( · , t )] ( y ) = [ F φ ( · , t )] ( y ) + [ G d ( · , t )] ( y ) , y ∈ [ a, b ] ϕ ( y, t ) = [ H φ ( · , t )] ( y ) , t ∈ [0 , ∞ ) ⋆ Spatial differential operators n ij f ij,k ( y ) d k � F = [ F ij ] = d y k k = 0 ⋆ Frequency response operator = H (j ω E − F ) − 1 G T

  5. Draft M. J OVANOVI ´ C , UMN 4 Example: channel flow • Streamwise-constant fluctuations (1 /Re ) ∆ 2 � � � � � � � � ∆ 0 φ 1 t 0 φ 1 = F 21 0 I φ 2 t (1 /Re ) ∆ φ 2 ∆ = ∂ yy − k 2 Laplacian: z ∆ 2 = ∂ yyyy − 2 k 2 z ∂ yy + k 4 ”Square of Laplacian”: z F 21 = − j k z U ′ ( y ) Coupling:

  6. Draft M. J OVANOVI ´ C , UMN 5 Singular value decomposition • Schmidt decomposition of a compact operator T ( ω ) : H in − → H out ∞ � ϕ ( y, ω ) = [ T ( ω ) d ( · , ω )] ( y ) = σ n ( ω ) u n ( y, ω ) � v n , d � n = 1 • Left and right singular functions [ T ( ω ) T ⋆ ( ω ) u n ( · , ω )] ( y ) = σ 2 n ( ω ) u n ( y, ω ) [ T ⋆ ( ω ) T ( ω ) v n ( · , ω )] ( y ) = σ 2 n ( ω ) v n ( y, ω ) { u n } orthonormal basis of H out { v n } orthonormal basis of H in

  7. Draft M. J OVANOVI ´ C , UMN 6 • Right singular functions ⋆ identify input directions with simple responses σ 1 ( ω ) ≥ σ 2 ( ω ) ≥ · · · > 0 ∞ � ϕ ( ω ) = T ( ω ) d ( ω ) = σ n ( ω ) u n ( ω ) � v n ( ω ) , d ( ω ) � n = 1  � d ( ω ) = v m ( ω )  ϕ ( ω ) = σ m ( ω ) u m ( ω ) σ 1 ( ω ) : the largest amplification at any frequency

  8. Draft M. J OVANOVI ´ C , UMN 7 Worst case amplification • H ∞ norm: an induced L 2 gain (of a system) � ∞ � ϕ ( t ) , ϕ ( t ) � d t sup output energy 0 G = = sup � ∞ input energy � d ( t ) , d ( t ) � d t 0 ω σ 2 1 ( T ( ω )) = sup 1 ( T ( ω )) σ 2

  9. Draft M. J OVANOVI ´ C , UMN 8 Robustness interpretation ϕ d Nominal s ✲ ✲ Dynamics Γ ✛ modeling uncertainty (can be nonlinear or time-varying) small-gain theorem: stability for all Γ with γ 2 < 1 ⇔ σ 2 1 (Γ( ω )) ≤ γ 2 max G ω LARGE ⇒ small stability margins worst case amplification closely related to pseudospectra of linear operators

  10. Draft M. J OVANOVI ´ C , UMN 9 Pseudo-spectral methods • MATLAB Differentiation Matrix Suite j ωI − D (2) � − 1 T ( ω ) = � ≈ N N • Advantages ⋆ superior accuracy compared to finite difference methods ⋆ ease-to-use M ATLAB codes • Disadvantages ⋆ ill-conditioning of high-order differentiation matrices ⋆ implementation of boundary conditions may be non-trivial Weideman & Reddy, ACM. TOMS. ’00

  11. Draft M. J OVANOVI ´ C , UMN 10 Alternative method 1. Frequency response operator: two-point boundary value problem 2. Integral form of differential equations 3. State-of-the-art automatic spectral collocation techniques

  12. Draft M. J OVANOVI ´ C , UMN 11 Advantages of Chebfun • Superior accuracy compared to currently available schemes • Avoids ill-conditioning of high-order differentiation matrices • Incorporates a wide range of boundary conditions • Easy-to-use MATLAB codes Lieu & Jovanovi´ c “Computation of frequency responses of linear time-invariant PDEs on a compact interval”, submitted to J. Comput. Phys., 2011 Also arXiv:1112.0579v1

  13. Draft M. J OVANOVI ´ C , UMN 12 2D inertialess flow of viscoelastic fluids − ∇ p + (1 − β ) ∇ · τ + β ∇ 2 v + d 0 = 0 = ∇ · v τ t = ∇ v + ( ∇ v ) T − τ + We ( τ · ∇ ¯ v + ¯ τ · ∇ v τ · ∇ v ) T + ( τ · ∇ ¯ v ) T − v · ∇ ¯ + (¯ τ − ¯ v · ∇ τ ) We = polymer relaxation time characteristic flow time

  14. Draft M. J OVANOVI ´ C , UMN 13 Largest singular value of T σ 1 ( T ) β = 0 . 5 k x = 1 ω = 0 N = 50 ( × ) 100 ( ◦ ) N = N = 200 (+) We

  15. Draft M. J OVANOVI ´ C , UMN 14 σ 1 ( T ) β = 0 . 5 k x = 1 ω = 0 N = 50 ( × ) 100 ( ◦ ) N = N = 200 (+) We

  16. Draft M. J OVANOVI ´ C , UMN 15 Input-output differential equations • Frequency response operator  [ A 0 φ ] ( y ) = [ B 0 d ] ( y )    T ( ω ) : ϕ ( y ) = [ C 0 φ ] ( y )  0 = N 0 φ ( y )   • Adjoint of the frequency response operator  [ A ⋆ 0 ψ ] ( y ) = [ C ⋆ 0 f ] ( y )    T ⋆ ( ω ) : g ( y ) = [ B ⋆ 0 ψ ] ( y )  0 = N ⋆ 0 ψ ( y )  

  17. Draft M. J OVANOVI ´ C , UMN 16 Composition of T with T ⋆ • Cascade connection  [ A ξ ] ( y ) = [ B f ] ( y )   T T ⋆ : ϕ ( y ) = [ C ξ ] ( y )  0 = N ξ ( y )  ⋆ Do e-value decomposition of T T ⋆ and T ⋆ T in Chebfun [ T ( ω ) T ⋆ ( ω ) u n ( · , ω )] ( y ) = σ 2 n ( ω ) u n ( y, ω ) [ T ⋆ ( ω ) T ( ω ) v n ( · , ω )] ( y ) = σ 2 n ( ω ) v n ( y, ω )

  18. Draft M. J OVANOVI ´ C , UMN 17 Example: 1D heat equation y ∈ [ − 1 , 1] φ t ( y, t ) = φ yy ( y, t ) + d ( y, t ) , φ ( ± 1 , t ) = 0 • Frequency response and adjoint operators  φ ′′ ( y ) − j ω φ ( y ) = − d ( y )  �� 1 � 0 � 0  T ( ω ) : � � � � E − 1 + E 1 φ ( y ) =  0 1 0   ψ ′′ ( y ) + j ω ψ ( y ) = f ( y )     g ( y ) = − ψ ( y )  T ⋆ ( ω ) : �� 1 � 0 � 0 � � � �  E − 1 + E 1 ψ ( y ) =    0 1 0 

  19. Draft M. J OVANOVI ´ C , UMN 18 Integral form of a differential equation Driscoll, J. Comput. Phys., 2010 • 1D diffusion equation: differential form � D (2) − j ωI � φ ( y ) = − d ( y ) �� � � � � � � 1 0 0 E − 1 + E 1 φ ( y ) = 0 1 0 D (2) φ � � Auxiliary variable: ν ( y ) = ( y ) Integrate twice � y � J (1) ν � φ ′ ( y ) = ν ( η 1 ) d η 1 + k 1 = ( y ) + k 1 − 1 � y �� η 2 � 1 � ( y + 1) � � � k 2 φ ( y ) = ν ( η 1 ) d η 1 d η 2 + k 1 − 1 − 1 J (2) ν ( y ) + K (2) k � � =

  20. Draft M. J OVANOVI ´ C , UMN 19 • 1D diffusion equation: integral form � I − j ωJ (2) � ν ( y ) − j ω K (2) k = − d ( y ) � � � � �� � � � � 1 0 k 2 1 0 J (2) ν ( y ) = − E − 1 + E 1 1 2 k 1 0 1 Eliminate k from the equations to obtain � I − j ωJ (2) + 1 � 2 j ω ( y + 1) E 1 J (2) ν ( y ) = − d ( y ) ☞ More suitable for numerical computations than differential form integral operators and point evaluation functionals are well-conditioned

  21. Draft M. J OVANOVI ´ C , UMN 20 Online resources • Chebfun http://www2.maths.ox.ac.uk/chebfun/ Google: “chebfun” • Computing frequency responses of PDEs http://www.umn.edu/ ∼ mihailo/software/chebfun-svd/ Google: “frequency responses pde”

  22. Draft M. J OVANOVI ´ C , UMN 21 Summary • method for computing frequency responses of PDEs • easy-to-use mini-toolbox in M ATLAB ⋆ enabling tool: Chebfun • two major advantages over currently available schemes ⋆ avoids ill-conditioning of high-order differentiation matrices ⋆ easy implementation of boundary conditions

  23. Draft M. J OVANOVI ´ C , UMN 22 Acknowledgments T EAM : Binh Lieu S UPPORT : NSF CAREER Award CMMI-06-44793 S OFTWARE : http://www.umn.edu/ ∼ mihailo/software/chebfun-svd/

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend