divergent components of motion
play

Divergent Components of Motion . Stphane Caron October 29, 2019 - PowerPoint PPT Presentation

Divergent Components of Motion . Stphane Caron October 29, 2019 JRL Seminar, CNRS-AIST Joint Robotics Laboratory, Tsukuba warmup : some control theory . 1 x = x first-order scalar case Trajectories . 2 Autonomous system 2.5


  1. Divergent Components of Motion . Stéphane Caron October 29, 2019 JRL Seminar, CNRS-AIST Joint Robotics Laboratory, Tsukuba

  2. warmup : some control theory .

  3. 1 ˙ x = λ x

  4. first-order scalar case Trajectories . 2 Autonomous system 2.5 ˙ 2.0 x = λ x 1.5 1.0 x ( t ) = e λ t x (0) 0.5 • We want to control x → 0 0.0 • Pole of the system : λ 0.5 • Stability : x − t →∞ 0 iff λ < 0 → 1.0 0.0 0.5 1.0 1.5 2.0 To control x toward a time-varying reference x d ( t ) , apply the same to the error e = x − x d

  5. 3 ˙ x = Ax

  6. first-order vectorial case Trajectories . 4 Autonomous system 3.0 ˙ 2.5 x = Ax 2.0 x ( t ) = e At x (0) 1.5 1.0 • Poles : eig ( A ) = { λ 1 , . . . , λ n } 0.5 • Stability : all poles λ i < 0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

  7. 5 ˙ x = Ax + Bu

  8. first-order linear system Linear feedback . • Pole placement 6 Linear system 3.0 ˙ x = Ax + Bu 2.5 2.0 u = − Kx 1.5 • Closed loop : ˙ x = ( A − BK ) x 1.0 • Poles : eig ( A − BK ) 0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

  9. application to legged robots .

  10. linear inverted pendulum (lip) . IEEE/RSJ International Conference on Intelligent Robots and Systems . 2001. 1. Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi et Hirohisa Hirukawa. « The 3D 1 same as system dynamics. Linear system : error dynamics is the 7 Equation of motion Real robot and reference trajectories : c = ω 2 ( c − z ) ¨ c = ω 2 ( c − z ) ¨ c d = ω 2 ( c d − z d ) ¨ Tracking error ∆ y = y − y d : c = ω 2 (∆ c − ∆ z ) ∆¨ Linear Inverted Pendulum Mode : A simple modeling for a biped walking pattern generation ». In :

  11. linear inverted pendulum tracking c Kaneko, Fumio Kanehiro et Kazuhito Yokoi. « Biped walking stabilization based on linear inverted 2. Shuuji Kajita, Mitsuharu Morisawa, Kanako Miura, Shin'ichiro Nakaoka, Kensuke Harada, Kenji 2 c Linear feedback : u . c 8 Equation of motion ¨ c = ω 2 ( c − z ) With x = [ c ˙ c ] and u = z : [ ] [ ] [ ] ˙ 0 1 0 ˙ x = = x + ω 2 − ω 2 ¨ 0 ∆ u = k p ∆ c + k v ∆˙ How to choose the gains k p and k v ? pendulum tracking ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems . 2010.

  12. diagonalization (1/2) The diagonalization of A would give : x are decoupled . u . 9 What if we can diagonalize A ? Linear system ˙ x = Ax + Bu u = − Kx [ ] [ ] 0 1 λ 1 0 P − 1 A = = P ω 2 0 0 λ 2 x = P − 1 x so that : We could then change variable � [ ] 0 λ 1 ˙ x = P − 1 ˙ x = P − 1 AP � x + P − 1 Bu = x + � � � B � 0 λ 2 The coordinates of �

  13. diagonalization (2/2) We then change variable : So that our system becomes : c . c Good news ! We can diagonalize A : Linear system 10 ˙ x = Ax + Bu u = − Kx [ ] [ ] [ ] − 1 A = 1 1 1 − ω 0 1 ω + 1 2 − ω ω 0 + ω 1 ω [ ] [ ] c − ˙ ζ = P − 1 x = � ω x = c + ˙ ξ ω [ ˙ ] [ ] [ ] [ ] { ˙ ζ − ω 0 ζ + ω ζ = ω ( u − ζ ) ˙ � x = = + u ⇐ ⇒ ˙ ˙ ξ 0 + ω ξ − ω ξ = ω ( ξ − u )

  14. components of motion • No feedback required . Divergent component of motion 11 Convergent component of motion ˙ ˙ ζ = ω ( u − ζ ) ξ = ω ( ξ − u ) • Feedback u = k ξ ξ required ! • Stable as long as k ξ > 1 • Stable : ζ → 0 as long as u → 0 Diag. DCM – + We only apply u = k ξ ξ since ξ → 0 ⇒ u → 0 ⇒ ζ → 0 .

  15. back to our initial question c mation . 2009. 3. Tomomichi Sugihara. « Standing stabilizability and stepping maneuver in planar bipedalism 3 Best possible linear feedback [Sug09]. We now know how to select our gains : u . c 12 Equation of motion c = ω 2 ( c − z ) ¨ With x = [ c ˙ c ] and u = z : [ ] [ ] [ ] ˙ 0 1 0 ˙ x = = x + ¨ ω 2 − ω 2 0 u = k p c + k v ˙ c = k ξ ξ k v = k p / ω k p > 1 based on the best COM-ZMP regulator ». In : IEEE International Conference on Robotics and Auto-

  16. 13 ˙ x = A ( t ) x

  17. exponential dichotomy . 3609707. Berlin : Springer, 1978. 97 p. 4. William A. Coppel. Dichotomies in stability theory . Lecture notes in mathematics 629. OCLC : 4 Pendular models for locomotion fall into this category of systems. 14 Exponential dichotomy (Coppel, 1967) The idea behind this approach has been explored in control theory. The system ˙ x = A ( t ) x has an exponential dichotomy iff there exists a projection Π and constants K , L , α, β > 0 such that its solutions satisfy : | Π x ( t ) | ≤ Ke − α ( t − t 0 ) | Π x ( t 0 ) | t 0 ≤ t | ( I − Π) x ( t ) | ≥ Le + β ( t − t 0 ) | ( I − Π) x ( t 0 ) | t 0 ≤ t • Π projects on CCMs that converge in forward time • ( I − Π) projects on DCMs that diverge in forward time

  18. 15 ˙ x = f ( x )

  19. height variation strategy . 5 5. Twan Koolen, Michael Posa et Russ Tedrake. « Balance control using center of mass height Humanoid Robots . 2016. 16 F ext F ext Rest position Ankle strategy Height variation strategy variation : Limitations imposed by unilateral contact ». In : IEEE-RAS International Conference on

  20. variable-height inverted pendulum (vhip) c Conference on Humanoid Robots . IEEE, 2014, p. 266–272. 6. Michael A. Hopkins, Dennis W. Hong et Alexander Leonessa. « Humanoid locomotion on une- 6 . c 17 Equation of motion ¨ c = λ ( c − z ) + g Nonlinear : both z and λ are inputs [ ] [ ] [ ] ˙ 0 0 I 3 ˙ x = = x + ( λ z − g ) ¨ 0 − I 3 λ I 3 = A ( λ ) x + B ( λ z − g ) Planning : fix λ ( t ) to make system linear time-variant : ˙ x = A ( t ) x + B λ ( t ) z − Bg What about feedback on λ ? ven terrain using the time-varying Divergent Component of Motion ». In : IEEE-RAS International

  21. a problem of motorcycle balance . on Decision and Control . Nassau, Bahamas : IEEE, 2004, 3944–3949 Vol.4. 7. J. Hauser, A. Saccon et R. Frezza. « Achievable motorcycle trajectories ». In : IEEE Conference 7 from [HSF04]. Figure 1 : Figure adapted A is diagonal... b with : 18 c Equation of motion c [ ] [ ] [ ] ˙ 0 0 I 3 ˙ x = = x + ( λ z − g ) ¨ λ I 3 0 − I 3 x = P − 1 x with : Let � [ ] [ ] 1 γ I 3 − I 3 ⇒ P − 1 = I 3 I 3 P = ⇐ γ + ω − ω I 3 + γ I 3 + I 3 ω I 3 Changing variable yields ˙ x = � Ax + � � [ ] γ + γ 2 − λ ) I 3 1 ( ˙ γ − γω − λ ) I 3 ( ˙ � A = ω − ω 2 + λ ) I 3 γ + ω ( ˙ ( ˙ ω + ωγ + λ ) I 3 We have a dichotomy if �

  22. exponential dichotomy of the vhip c c c Then we have an exponential dichotomy : A diagonal ! Choose : . 19 c Equation of motion [ ] [ ] [ ] ˙ 0 0 I 3 ˙ x = = x + ( λ z − g ) ¨ λ I 3 0 − I 3 So let's make � γ = λ − γ 2 ˙ ω = ω 2 − λ ˙ ζ = c − ˙ ζ = λ ˙ γ ( z − ζ ) − g γ γ ξ = c + ˙ ξ = λ ˙ ω ( ξ − z ) + g ω ω

  23. curious fact . We achieved the exponential dichotomy by choosing : 8 8. Stéphane Caron, Adrien Escande, Leonardo Lanari et Bastien Mallein. « Capturability-based 20 ω = ω 2 − λ ˙ This natural frequency ω behaves like a DCM : • λ is an input • ω diverges under constant input Pattern Generation for Walking with Variable Height ». In : IEEE Transactions on Robotics (juil. 2019).

  24. interpretation . https://en.wikipedia.org/wiki/Duck_test 21

  25. 4d dcm for the vhip . 9. Stéphane Caron. « Biped Stabilization by Linear Feedback of the Variable-Height Inverted 9 Nonlinear system. g z 22 = Divergent component of motion [ ] [ ] [ ] [ ] [ ] x = 1 0 x − 1 0 + 1 ξ λ I 3 λ I 3 ⇒ ˙ x = ω 2 ω ω 0 ω 0 ω λ ω 0 Pendulum Model ». submitted. Sept. 2019.

  26. 4d dcm for the vhip z 9. Stéphane Caron. « Biped Stabilization by Linear Feedback of the Variable-Height Inverted Take its linearized error dynamics : Nonlinear system. g . 22 = Divergent component of motion [ ] [ ] [ ] [ ] [ ] ξ x = 1 λ I 3 0 x − 1 λ I 3 0 + 1 ⇒ ˙ x = ω 2 ω ω 0 ω 0 ω λ ω 0 [ ] [ ] [ ] ( ξ d − z d ) − ¨ c d / ω d ∆ z x = 1 λ d I 3 ∆ x − 1 λ d I 3 ∆˙ 2( ω d ) 2 ω d 0 ω d 0 ω d ∆ λ We are back to ∆˙ x = A ∆ x + B ∆ u . 9 Pendulum Model ». submitted. Sept. 2019.

  27. least-squares pole placement . Least squares problem : Subject to : 23 Place poles of the closed-loop system : [ ] x ∗ = (1 − k ) 1 λ d I 3 0 ∆˙ ∆ x ( ω d ) 2 ω d 0 x ∗ ∥ 2 Minimize : ∥ ∆˙ x − ∆˙ • Linearized dynamics : ∆˙ x = A ∆ x + B ∆ u • ZMP support area : C ( z d + ∆ z ) ≤ d • Reaction force : λ min ≤ λ d + ∆ λ ≤ λ max • Kinematics : h min ≤ ξ d z + ∆ ξ z ≤ h max ⇒ Constrained optimal gains ∆ u = − K ∆ x

  28. behavior . https://github.com/stephane-caron/pymanoid/blob/master/examples/vhip_stabilization.py 24

  29. controller adjusts the dcm . One last observation : previously, the DCM was a measure : Now, the controller adjusts the DCM based on state and constraints : 25 Diag. DCM – + Pole placement Diag. constrained opt. – +

  30. tests on HRP-4 .

  31. overall system . 26 Commanded Desired Kinematic Kinematic Commanded Footstep Walking Whole-body Targets Targets Joint Angles Locations Inverse Pattern Admittance Kinematics Generation Control Desired Measured Wrench Wrench CoM Position Joint Angles DCM Desired DCM CoM CoM Velocity IMU Orientation Control Observer

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend