differential geometry
play

Differential Geometry Mark Pauly Outline Differential Geometry - PowerPoint PPT Presentation


  1. ��������� ��� ��������� ���� ������� �������������� ��� ���������� ��������� ������� ��������� ��� ����� ������� �������� �� ������� ������� �������� ��� ��������������� �������� ������� �� ����������� ��� ����������� ������ ����� ���� ��� ���������� ���������� ���������������� Differential Geometry Mark Pauly

  2. Outline • Differential Geometry – curvature – fundamental forms – Laplace-Beltrami operator • Discretization • Visual Inspection of Mesh Quality 2 Mark Pauly

  3. Differential Geometry • Continuous surface   x ( u, v ) R 2 x ( u, v ) = y ( u, v )  , ( u, v ) ∈ I  z ( u, v ) • Normal vector n = ( x u × x v ) / � x u × x v � – assuming regular parameterization, i.e. x u × x v � = 0 3 Mark Pauly

  4. Differential Geometry • Normal Curvature x u × x v n = n � x u × x v � x u x v p t t = cos φ x u � x u � + sin φ x v � x v � 4 Mark Pauly

  5. Differential Geometry • Normal Curvature x u × x v n = n � x u × x v � c t p t = cos φ x u � x u � + sin φ x v � x v � 5 Mark Pauly

  6. Differential Geometry • Principal Curvatures κ 1 = max κ n ( φ ) – maximum curvature φ – minimum curvature κ 2 = min φ κ n ( φ ) t ) = κ n ( φ ) = κ 1 cos 2 φ + κ 2 sin 2 φ κ n (¯ • Euler Theorem: � 2 π H = κ 1 + κ 2 = 1 • Mean Curvature κ n ( φ ) dφ 2 2 π 0 • Gaussian Curvature K = κ 1 · κ 2 6 Mark Pauly

  7. Differential Geometry • Normal curvature is defined as curvature of the normal curve at a point c ∈ x ( u, v ) p ∈ c • Can be expressed in terms of fundamental forms as ea 2 + 2 fab + gb 2 t T II ¯ ¯ t κ n (¯ t ) = = Ea 2 + 2 Fab + Gb 2 t T I ¯ ¯ t n t = a x u + b x v t c p 7 Mark Pauly

  8. Differential Geometry • First fundamental form � � � x T x T � E F u x u u x v I = := x T x T F G u x v v x v • Second fundamental form � � � x T x T � e f uu n uv n II = := x T x T f g uv n vv n 8 Mark Pauly

  9. Differential Geometry • I and II allow to measure – length, angles, area, curvature – arc element ds 2 = Edu 2 + 2 Fdudv + Gdv 2 – area element � EG − F 2 dudv dA = 9 Mark Pauly

  10. Differential Geometry • Intrinsic geometry: Properties of the surface that only depend on the first fundamental form – length – angles – Gaussian curvature (Theorema Egregium) 6 πr − 3 C ( r ) K = lim πr 3 r → 0 10 Mark Pauly

  11. Differential Geometry • A point x on the surface is called – elliptic , if K > 0 – parabolic , if K = 0 – hyperbolic , if K < 0 – umbilical , if κ 1 = κ 2 • Developable surface ⇔ K = 0 11 Mark Pauly

  12. Laplace Operator gradient Laplace 2nd partial operator operator derivatives ∂ 2 f � ∆ f = div ∇ f = ∂x 2 i i function in Cartesian divergence Euclidean space coordinates operator 12 Mark Pauly

  13. Laplace-Beltrami Operator • Extension of Laplace to functions on manifolds gradient Laplace- operator Beltrami ∆ S f = div S ∇ S f function on divergence S manifold operator 13 Mark Pauly

  14. Laplace-Beltrami Operator • Extension of Laplace to functions on manifolds gradient Laplace- mean operator Beltrami curvature ∆ S x = div S ∇ S x = − 2 H n surface coordinate divergence normal function operator 14 Mark Pauly

  15. Outline • Differential Geometry – curvature – fundamental forms – Laplace-Beltrami operator • Discretization • Visual Inspection of Mesh Quality 15 Mark Pauly

  16. Discrete Differential Operators • Assumption: Meshes are piecewise linear approximations of smooth surfaces • Approach: Approximate differential properties at point x as spatial average over local mesh neighborhood N(x) , where typically – x = mesh vertex – N(x) = n -ring neighborhood or local geodesic ball 16 Mark Pauly

  17. Discrete Laplace-Beltrami • Uniform discretization 1 � ( f ( v i ) − f ( v )) ∆ uni f ( v ) := |N 1 ( v ) | v i ∈N 1 ( v ) – depends only on connectivity → simple and efficient – bad approximation for irregular triangulations 17 Mark Pauly

  18. Discrete Laplace-Beltrami • Cotangent formula 2 � ∆ S f ( v ) := (cot α i + cot β i ) ( f ( v i ) − f ( v )) A ( v ) v i ∈N 1 ( v ) v A ( v ) v α i v β i v i v i v i 18 Mark Pauly

  19. Discrete Laplace-Beltrami • Cotangent formula 2 � ∆ S f ( v ) := (cot α i + cot β i ) ( f ( v i ) − f ( v )) A ( v ) v i ∈N 1 ( v ) • Problems – negative weights – depends on triangulation 19 Mark Pauly

  20. Discrete Curvatures • Mean curvature H = � ∆ S x � • Gaussian curvature A � G = (2 π − θ j ) /A j θ j • Principal curvatures � � H 2 − G H 2 − G κ 2 = H − κ 1 = H + 20 Mark Pauly

  21. Links & Literature • P. Alliez: Estimating Curvature Tensors on Triangle Meshes (source code) – http://www-sop.inria.fr/geometrica/team/ Pierre.Alliez/demos/curvature/ • Wardetzky, Mathur, Kaelberer, Grinspun: Discrete Laplace Operators: No free lunch , SGP 2007 principal directions 21 Mark Pauly

  22. Outline • Differential Geometry – curvature – fundamental forms – Laplace-Beltrami operator • Discretization • Visual Inspection of Mesh Quality 22 Mark Pauly

  23. Mesh Quality • Smoothness – continuous differentiability of a surface ( C k ) • Fairness – aesthetic measure of “well-shapedness” – principle of simplest shape – fairness measures from physical models � 2 � 2 � � ∂κ 1 � ∂κ 2 � κ 2 1 + κ 2 2 dA dA + ∂ t 1 ∂ t 2 S S strain energy variation of curvature 23 Mark Pauly

  24. Mesh Quality � 2 � 2 � � ∂κ 1 � ∂κ 2 � κ 2 1 + κ 2 2 dA dA + ∂ t 1 ∂ t 2 S S strain energy variation of curvature 24 Mark Pauly

  25. Mesh Quality • Visual inspection of “sensitive” attributes – Specular shading 25 Mark Pauly

  26. Mesh Quality • Visual inspection of “sensitive” attributes – Specular shading – Reflection lines 26 Mark Pauly

  27. Mesh Quality • Visual inspection of “sensitive” attributes – Specular shading – Reflection lines • differentiability one order lower than surface • can be efficiently computed using graphics hardware C 0 C 1 C 2 27 Mark Pauly

  28. Mesh Quality • Visual inspection of “sensitive” attributes – Specular shading – Reflection lines – Curvature • Mean curvature 28 Mark Pauly

  29. Mesh Quality • Visual inspection of “sensitive” attributes – Specular shading – Reflection lines – Curvature • Mean curvature • Gauss curvature 29 Mark Pauly

  30. Mesh Quality Criteria • Smoothness – Low geometric noise 30 Mark Pauly

  31. Mesh Quality Criteria • Smoothness – Low geometric noise • Adaptive tessellation – Low complexity 31 Mark Pauly

  32. Mesh Quality Criteria • Smoothness – Low geometric noise • Adaptive tessellation – Low complexity • Triangle shape – Numerical robustness 32 Mark Pauly

  33. Triangle Shape Analysis • Circum radius / shortest edge r 1 r 1 < r 2 e 2 e 1 e 2 r 2 e 1 • Needles and caps Needle Cap 33 Mark Pauly

  34. Mesh Quality Criteria • Smoothness – Low geometric noise • Adaptive tessellation – Low complexity • Triangle shape – Numerical robustness • Feature preservation – Low normal noise 34 Mark Pauly

  35. Normal Noise Analysis 35 Mark Pauly

  36. Mesh Optimization • Smoothness ➡ Mesh smoothing • Adaptive tessellation ➡ Mesh decimation • Triangle shape ➡ Repair, remeshing 36 Mark Pauly

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend