diagonalization of the discrete fourier transform using
play

Diagonalization of the Discrete Fourier Transform using Weil - PowerPoint PPT Presentation

Diagonalization of the Discrete Fourier Transform using Weil Representation Shamgar Gurevich Madison August 3, 2014 Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 1 / 12 (0) Motivation - Diagonalizing DFT H = C


  1. Diagonalization of the Discrete Fourier Transform using Weil Representation Shamgar Gurevich Madison August 3, 2014 Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 1 / 12

  2. (0) Motivation - Diagonalizing DFT H = C ( F p ) — Hilbert space of digital sequences. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 2 / 12

  3. (0) Motivation - Diagonalizing DFT H = C ( F p ) — Hilbert space of digital sequences. ψ ( t ) = exp ( 2 π it / p ) . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 2 / 12

  4. (0) Motivation - Diagonalizing DFT H = C ( F p ) — Hilbert space of digital sequences. ψ ( t ) = exp ( 2 π it / p ) . DFT : H → H - Discrete Fourier Transform 1 DFT [ f ]( ω ) = ψ ( ω t ) f ( t ) . √ p ∑ t ∈ F p Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 2 / 12

  5. (0) Motivation - Diagonalizing DFT H = C ( F p ) — Hilbert space of digital sequences. ψ ( t ) = exp ( 2 π it / p ) . DFT : H → H - Discrete Fourier Transform 1 DFT [ f ]( ω ) = ψ ( ω t ) f ( t ) . √ p ∑ t ∈ F p Fact: DFT 4 = Id = ⇒ λ ( DFT ) ∈ {± 1 , ± i } . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 2 / 12

  6. (0) Motivation - Diagonalizing DFT H = C ( F p ) — Hilbert space of digital sequences. ψ ( t ) = exp ( 2 π it / p ) . DFT : H → H - Discrete Fourier Transform 1 DFT [ f ]( ω ) = ψ ( ω t ) f ( t ) . √ p ∑ t ∈ F p Fact: DFT 4 = Id = ⇒ λ ( DFT ) ∈ {± 1 , ± i } . Problem ( Diagonalization ) Find natural basis of eigenfunctions for DFT . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 2 / 12

  7. Solution - Idea Find natural Symmetries DFT � H � C Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 3 / 12

  8. Solution - Idea Find natural Symmetries DFT � H � C C commutative group. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 3 / 12

  9. Solution - Idea Find natural Symmetries DFT � H � C C commutative group. Take common eigenfunctions! Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 3 / 12

  10. Solution - Idea Find natural Symmetries DFT � H � C C commutative group. Take common eigenfunctions! Question: C = ? . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 3 / 12

  11. Solution - Idea Find natural Symmetries DFT � H � C C commutative group. Take common eigenfunctions! Question: C = ? . Answer: Characterization of DFT . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 3 / 12

  12. Characterization of DFT Basic operations Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 4 / 12

  13. Characterization of DFT Basic operations Time shift: τ ∈ F p , � L τ : H → H , L τ [ f ]( t ) = f ( t + τ ) , t ∈ Z N . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 4 / 12

  14. Characterization of DFT Basic operations Time shift: τ ∈ F p , � L τ : H → H , L τ [ f ]( t ) = f ( t + τ ) , t ∈ Z N . Frequency shift: ω ∈ F p , � M ω : H → H , M ω [ f ]( t ) = ψ ( ω t ) f ( t ) . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 4 / 12

  15. Characterization of DFT Basic operations Time shift: τ ∈ F p , � L τ : H → H , L τ [ f ]( t ) = f ( t + τ ) , t ∈ Z N . Frequency shift: ω ∈ F p , � M ω : H → H , M ω [ f ]( t ) = ψ ( ω t ) f ( t ) . Intertwining relations � DFT ◦ L τ = M τ ◦ DFT , DFT ◦ M ω = L − ω ◦ DFT . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 4 / 12

  16. Characterization of DFT - Cont. Combine � π : F p × F p → U ( H ) , π ( τ , ω ) = ψ ( − 1 2 τω ) · M ω ◦ L τ Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 5 / 12

  17. Characterization of DFT - Cont. Combine � π : F p × F p → U ( H ) , π ( τ , ω ) = ψ ( − 1 2 τω ) · M ω ◦ L τ Intertwining relations W � �� � � τ � � 0 � � τ � − 1 Σ W : DFT ◦ π = π ( ) ◦ DFT . ω 1 0 ω System of p 2 linear equations. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 5 / 12

  18. Characterization of DFT - Cont. Combine � π : F p × F p → U ( H ) , π ( τ , ω ) = ψ ( − 1 2 τω ) · M ω ◦ L τ Intertwining relations W � �� � � τ � � 0 � � τ � − 1 Σ W : DFT ◦ π = π ( ) ◦ DFT . ω 1 0 ω System of p 2 linear equations. Theorem (Stone - von Neumann) dim Sol ( Σ W ) = 1 . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 5 / 12

  19. Characterization of DFT - Cont. Combine � π : F p × F p → U ( H ) , π ( τ , ω ) = ψ ( − 1 2 τω ) · M ω ◦ L τ Intertwining relations W � �� � � τ � � 0 � � τ � − 1 Σ W : DFT ◦ π = π ( ) ◦ DFT . ω 1 0 ω System of p 2 linear equations. Theorem (Stone - von Neumann) dim Sol ( Σ W ) = 1 . ⇒ DFT is characterized by Σ W . = Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 5 / 12

  20. (II) The Weil Representation Note �� a � � b W ∈ SL 2 ( F p ) = ; a , b , c , d ∈ F p , ad − bc = 1 . c d Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 6 / 12

  21. (II) The Weil Representation Note �� a � � b W ∈ SL 2 ( F p ) = ; a , b , c , d ∈ F p , ad − bc = 1 . c d Generalization: g ∈ SL 2 ( F p ) � τ � � τ � Σ g : ρ ( g ) ◦ π = π ( g · ) ◦ ρ ( g ) . ω ω System of p 2 linear equations. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 6 / 12

  22. (II) The Weil Representation Note �� a � � b W ∈ SL 2 ( F p ) = ; a , b , c , d ∈ F p , ad − bc = 1 . c d Generalization: g ∈ SL 2 ( F p ) � τ � � τ � Σ g : ρ ( g ) ◦ π = π ( g · ) ◦ ρ ( g ) . ω ω System of p 2 linear equations. Theorem (Stone - von Neumann) dim Sol ( Σ g ) = 1 . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 6 / 12

  23. (II) The Weil Representation Note �� a � � b W ∈ SL 2 ( F p ) = ; a , b , c , d ∈ F p , ad − bc = 1 . c d Generalization: g ∈ SL 2 ( F p ) � τ � � τ � Σ g : ρ ( g ) ◦ π = π ( g · ) ◦ ρ ( g ) . ω ω System of p 2 linear equations. Theorem (Stone - von Neumann) dim Sol ( Σ g ) = 1 . = ⇒ ρ ( g ) is characterized by Σ g . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 6 / 12

  24. Weil Representation Theorem ∃ ! collection of operators ρ ( g ) ∈ Sol ( Σ g ) , g ∈ SL 2 ( F p ) , such that ρ ( gh ) = ρ ( g ) ◦ ρ ( h ) . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 7 / 12

  25. Weil Representation Theorem ∃ ! collection of operators ρ ( g ) ∈ Sol ( Σ g ) , g ∈ SL 2 ( F p ) , such that ρ ( gh ) = ρ ( g ) ◦ ρ ( h ) . The homomorphism ρ : SL 2 ( F p ) → U ( H ) , H = C ( F p ) , is called the Weil Representation. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 7 / 12

  26. (III) Diagonalizing the DFT We have � ρ : SL 2 ( F p ) → U ( H ) ⊃ C = ? W �→ ρ ( W ) = DFT ; Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 8 / 12

  27. (III) Diagonalizing the DFT We have � ρ : SL 2 ( F p ) → U ( H ) ⊃ C = ? W �→ ρ ( W ) = DFT ; Consider symmetries of W : T W = { g ∈ SL 2 ( F p ) ; gW = Wg } � � g ∈ SL 2 ( F p ) ; gg t = I = = SO 2 ( F p ) - finite rotations. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 8 / 12

  28. (III) Diagonalizing the DFT We have � ρ : SL 2 ( F p ) → U ( H ) ⊃ C = ? W �→ ρ ( W ) = DFT ; Consider symmetries of W : T W = { g ∈ SL 2 ( F p ) ; gW = Wg } � � g ∈ SL 2 ( F p ) ; gg t = I = = SO 2 ( F p ) - finite rotations. Lemma T W is a maximal commutative subgroup (torus) of SL 2 ( F p ) . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 8 / 12

  29. (III) Diagonalizing the DFT We have � ρ : SL 2 ( F p ) → U ( H ) ⊃ C = ? W �→ ρ ( W ) = DFT ; Consider symmetries of W : T W = { g ∈ SL 2 ( F p ) ; gW = Wg } � � g ∈ SL 2 ( F p ) ; gg t = I = = SO 2 ( F p ) - finite rotations. Lemma T W is a maximal commutative subgroup (torus) of SL 2 ( F p ) . Proof. P W ( x ) = det ( xI − W ) = x 2 + 1 . Hence λ ( W ) = ±√− 1 . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 8 / 12

  30. Diagonalizing the DFT Symmetries of DFT C = Im ( T W ) = { ρ ( g ) ; g ∈ T W } . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 9 / 12

  31. Diagonalizing the DFT Symmetries of DFT C = Im ( T W ) = { ρ ( g ) ; g ∈ T W } . C commutative group of unitary operators commuting with DFT . Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 9 / 12

  32. Diagonalizing the DFT Symmetries of DFT C = Im ( T W ) = { ρ ( g ) ; g ∈ T W } . C commutative group of unitary operators commuting with DFT . Can diagonalize C simultaneously. Shamgar Gurevich (Madison) Diagonalizing DFT using Weil Repn August 3, 2014 9 / 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend