developmental partial differential equations
play

Developmental Partial Differential Equations Nastassia Pouradier - PowerPoint PPT Presentation

Developmental Partial Differential Equations Nastassia Pouradier Duteil Rutgers University - Camden Kinet Young Researchers Workshop November 30, 2016 Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 1 / 32


  1. Developmental Partial Differential Equations Nastassia Pouradier Duteil Rutgers University - Camden Kinet Young Researchers’ Workshop November 30, 2016 Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 1 / 32

  2. Outline Motivation: A description of oogenesis 1 The heat equation on time-varying manifolds 2 A “Lie bracket” between transport and heat 3 Control of growth via a signal 4 Future Directions 5 Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 2 / 32

  3. Motivation: A description of oogenesis Drosophila oogenesis Figure: Drosophila melanogaster oogenesis Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 3 / 32

  4. Motivation: A description of oogenesis Morphogens Morphogen Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 4 / 32

  5. Motivation: A description of oogenesis Morphogens Morphogen Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 4 / 32

  6. Motivation: A description of oogenesis Morphogens Morphogen Figure: “French flag model” Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 4 / 32

  7. Motivation: A description of oogenesis Morphogens Morphogen Figure: “French flag model” Figure: Morphlogies of Drosophila eggshells and Gurken patterning Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 4 / 32

  8. Motivation: A description of oogenesis Mechanism of Gurken diffusion and internalization Figure: Gurken diffusion from oocyte nucleus in the perivitelline space and internalization into the follicle cells Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 5 / 32

  9. Motivation: A description of oogenesis Mechanism of Gurken diffusion and internalization Figure: Gurken in Drosophila willistoni Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 6 / 32

  10. The heat equation on time-varying manifolds Motivation: A description of oogenesis 1 The heat equation on time-varying manifolds 2 A “Lie bracket” between transport and heat 3 Control of growth via a signal 4 Future Directions 5 Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 7 / 32

  11. The heat equation on time-varying manifolds General model M t : time-varying compact manifold of dimension n M t embedded in R d = R n +1 φ # u Organism’s membrane φ φ # w x t M 0 u x w Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 8 / 32

  12. The heat equation on time-varying manifolds General model M t : time-varying compact manifold of dimension n M t embedded in R d = R n +1 φ # u Organism’s membrane φ φ # w x t v [ · ] : P c ( R d ) → Lip ( R d , R d ) M 0 u Growth vector field x w Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 8 / 32

  13. The heat equation on time-varying manifolds General model M t : time-varying compact manifold of dimension n M t embedded in R d = R n +1 φ # u Organism’s membrane φ φ # w x t v [ · ] : P c ( R d ) → Lip ( R d , R d ) M 0 u Growth vector field x w Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 8 / 32

  14. The heat equation on time-varying manifolds General model M t : time-varying compact manifold of dimension n M t embedded in R d = R n +1 φ # u Organism’s membrane φ φ # w x t v [ · ] : P c ( R d ) → Lip ( R d , R d ) M 0 u Growth vector field x w Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 8 / 32

  15. The heat equation on time-varying manifolds General model M t : time-varying compact manifold of dimension n M t embedded in R d = R n +1 φ # u Organism’s membrane φ φ # w x t v [ · ] : P c ( R d ) → Lip ( R d , R d ) M 0 u Growth vector field x w Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 8 / 32

  16. The heat equation on time-varying manifolds General model M t : time-varying compact manifold of dimension n M t embedded in R d = R n +1 φ # u Organism’s membrane φ φ # w x t v [ · ] : P c ( R d ) → Lip ( R d , R d ) M 0 u Growth vector field x µ t ∈ P ( M t ): probability w measure on M t (also, µ t ∈ P c ( R d )) Morphogen diffusing in intercellular space Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 8 / 32

  17. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 9 / 32

  18. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) where v : a Lipschitz function w.r.t. the Wasserstein distance W 2 Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 9 / 32

  19. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) where v : a Lipschitz function w.r.t. the Wasserstein distance W 2 ∆ t : Laplace-Beltrami operator on M t Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 9 / 32

  20. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) where v : a Lipschitz function w.r.t. the Wasserstein distance W 2 ∆ t : Laplace-Beltrami operator on M t Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 9 / 32

  21. The heat equation on time-varying manifolds Wasserstein distance: Monge transportation problem How do you best move a pile of sand to fill up a given hole of the same total volume? Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 10 / 32

  22. The heat equation on time-varying manifolds Wasserstein distance: Monge transportation problem Monge’s problem (1781) Given µ, ν ∈ P ( X ) and c : X × X → R + a Borel-measurable function, � Minimize c ( x , T ( x )) d µ ( x ) X among all transport maps T : X → X s.t. T # µ = ν . Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 10 / 32

  23. The heat equation on time-varying manifolds Wasserstein distance: Monge transportation problem Kantorovich’s formulation (1940’s) Given µ, ν ∈ P ( X ) and c : X × X → R + a Borel-measurable function, � Minimize c ( x , y ) d γ ( x , y ) X × X where γ ∈ Π( µ, ν ) := { ρ ∈ P ( X × X ) | π 1 # ρ = µ, π 2 # ρ = ν } . Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 10 / 32

  24. The heat equation on time-varying manifolds p -Wasserstein distance ��� � 1 / p � R n × R n | x − y | p d γ ( x , y ) W p ( µ, ν ) = inf γ ∈ Π( µ,ν ) Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 11 / 32

  25. The heat equation on time-varying manifolds p -Wasserstein distance ��� � 1 / p � R n × R n | x − y | p d γ ( x , y ) W p ( µ, ν ) = inf γ ∈ Π( µ,ν ) Figure: Two measures with different L 1 and W 1 distances (respectively O (1) and O ( δ )). Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 11 / 32

  26. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) where v : a Lipschitz function w.r.t. the Wasserstein distance W 2 ∆ t : Laplace-Beltrami operator on M t Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 12 / 32

  27. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) where v : a Lipschitz function w.r.t. the Wasserstein distance W 2 ∆ t : Laplace-Beltrami operator on M t Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 12 / 32

  28. The heat equation on time-varying manifolds Laplace-Beltrami operator Laplace-Beltrami operator: generalization of the Laplacian on Riemannian manifolds. ∆ f := ∇ · ∇ f Let ( x i ) i ∈{ 1 ,..., n } be a coordinate system on M t and g t be the metric tensor of M t . Let f ∈ C ∞ ( M t ). n n 1 ∂ ∂ � � � g ij ∆ t f = ( | g t | f ) t � ∂ x i ∂ x j | g t | i =1 j =1 Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 13 / 32

  29. The heat equation on time-varying manifolds Coupling of diffusion and manifold evolution Evolution of µ t by the combined transport and diffusion: Transport-diffusion PDE ∂ t µ t + ∇ · ( v [ µ t ] µ t ) = ∆ t µ t (1) where v : a Lipschitz function w.r.t. the Wasserstein distance W 2 ∆ t : Laplace-Beltrami operator on M t Nastassia Pouradier Duteil (Rutgers) Developmental PDEs Kinet, Nov. 30, 2016 14 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend