development of a rogowski coil as a new beam position
play

Development of a Rogowski coil as a new Beam Position Monitor (BPM) - PowerPoint PPT Presentation

Development of a Rogowski coil as a new Beam Position Monitor (BPM) Mitglied der Helmholtz-Gemeinschaft Horizontal and Vertical Rogowski BPM Fabian Trinkel for the JEDI collaboration Eucard Workshop Mainz 2015 Content Introduction


  1. Development of a Rogowski coil as a new Beam Position Monitor (BPM) Mitglied der Helmholtz-Gemeinschaft Horizontal and Vertical Rogowski BPM Fabian Trinkel for the JEDI collaboration Eucard Workshop Mainz 2015

  2. Content • Introduction • Theory for positon determination with a Rogowski coil as BPM • Technical approach • First measurements with a Rogowski coil as horizontal BPM • Summary and outlook Mitglied der Helmholtz-Gemeinschaft 28 September 2015 2

  3. Introduction Existence of an EDM violates CP-theorem, which is necessary to explain the matter over antimatter dominance in the Universe 𝑇 𝑇 ℋ = −𝜈 𝑇 ∙ 𝐶 − 𝑒 𝑇 ∙ 𝐹 𝑇 𝑇 𝑸 : ℋ = −𝜈 𝑇 ∙ 𝐶 + 𝑒 𝑇 ∙ 𝑭 𝑇 𝑇 𝑼 : ℋ = −𝜈 𝑇 ∙ 𝐶 + 𝑒 𝑇 ∙ 𝑭  : MDM Standard Model EDM prediction: 10 −32 to 10 −31 𝑓𝑑𝑛 𝒆 : EDM Mitglied der Helmholtz-Gemeinschaft Aim of Jülich Electric Dipole moment Investigations collaboration: Measure the EDM of charged hadrons for protons p and deuterons d 28 September 2015 3

  4. EDM measurements in storage rings 𝑒𝑇 × 𝐹 𝑒𝑢∝ 𝑒 = 𝜃 2⋅ 𝑓 𝑒 2𝑛𝑑𝑇 General idea: • Inject polarised particles with spin pointing towards the momentum direction • “Frozen Spin” -Technique: without EDM spin stays aligned to momentum • EDM couples to electric bending fields Mitglied der Helmholtz-Gemeinschaft • EDM leads to a polarization build-up in vertical direction Challenge: Control of the Orbit with a very high accuracy to prevent systematic effects 28 September 2015 4

  5. Cooler Synchrotron COSY in Jülich Sextupole magnets RF Devices for Spin Manipulations Electron Cooler Installation of the EDDA Polarimeter Rogowski Coil in a Chamber Mitglied der Helmholtz-Gemeinschaft Momentum up to 3.5 GeV/c Polarized Protons / Deuterons Circumference 184 m 28. September 2015 5

  6. Beam Position Monitor (BPM) BPM measures transverse beam positon ( 𝑦 0 , 𝑧 0 ) Electrostatic BPM (Standard at COSY): Magnetostatic BPM (New Development): Length ≈ 20 cm Length ≈ 1 cm Excellent response to an RF signal Easy to manufacture Mitglied der Helmholtz-Gemeinschaft Accuracy of the existing COSY BPM More precise position measurement with system ≈ 0.1 mm Rogowski BPM System and a first step to Not enough for an EDM measurement a SQUID-based BPM development 28 September 2015 6

  7. Rogowski Coil Pickup-Coil to measure the magnetic flux: Standard application to measure AC currents R Torus with: y • Major radius 𝑆 = 40 𝑛𝑛 x 𝑠 0 • Minor radius 𝑏 = 5 𝑛𝑛 z • Winding with copper wire 𝑂 = 1400 𝐽 • Divided into • One segment (BCT) • Two segments (BPM in one dimension) a • Four segments Mitglied der Helmholtz-Gemeinschaft (BPM in two dimensions) R 28. September 2015 7 7

  8. Magnetic Field of Particle Beam Model: Pencil-current with constant velocity at position ( 𝑦 0 , 𝑧 0 ) Particle Beam Pickup-Coil = 𝐽 0 ⋅ 𝑓 𝑨 Current: 𝐽 𝑦 0 𝑦 Mitglied der Helmholtz-Gemeinschaft Position: Position: 𝑧 0 𝑠 0 = 𝑧 𝑠 = 0 𝑨 Magnetic Field: 𝐶 = 𝜈 0 𝑠 −𝑠 0 × 2𝜌 𝐽 −𝑠 0 2 𝑠 28. September 2015 8

  9. Induced Voltage 𝑉 𝑗𝑜𝑒 = − 𝑒 = − 𝑒 𝑒𝑢 𝐶 ⋅ 𝑒𝐵 𝑒𝑢 𝐶 𝜒 𝑒𝑠𝑒𝑨𝑆𝑒𝜒 2 ) leads to: 2 𝑆 Taylor of 𝐶 𝜒 to 𝒫(𝑠 0 𝑗𝑜𝑒,1/1 = 𝑒𝐽 0 𝑆 2 − 𝑏 2 𝑉 𝑒𝑢 𝑂𝜈 0 𝑆 − Beam Current Transformator † 𝑗𝑜𝑒,1/2 = 𝑒𝐽 𝑂 0 𝑆 2 − 𝑏 2 2 𝑉 2 𝜈 0 𝑆 − 1− 𝜌 𝑆 2 −𝑏 2 𝑦 0 𝑒𝑢 2 sin 2Ψ− 2𝜒 𝑏 2 Mitglied der Helmholtz-Gemeinschaft 𝑗𝑜𝑒,1/4 = 𝑒𝐽 𝑂 𝑠 0 𝑆 2 − 𝑏 2 0 2 2 𝑉 4 𝜈 0 𝑆 − 1− 𝜌 𝑆 2 −𝑏 2 𝑦 0 − 𝜌 𝑆 2 − 𝑏 2 3/2 ⋅ (𝑆 − 𝑆 2 − 𝑏 2 ) 𝑒𝑢 † “ Mutual inductances comparison in Rogowski coil with circular and rectangular cross-sections 28. September 2015 9 and its improvement ” http://dx.doi.org/10.1109/ICIEA.2008.4582770

  10. Position Dependency Prediction of a halved Rogowski Coil Rogowski coil measures the flux density change A voltage is induced and the beam position can be determined by: 𝑦 ∝ 𝑉 𝐽𝑜𝑒,𝑚𝑓𝑔𝑢 − 𝑉 𝐽𝑜𝑒,𝑠𝑗𝑕ℎ𝑢 𝑉 𝐽𝑜𝑒,𝑚𝑓𝑔𝑢 + 𝑉 𝐽𝑜𝑒,𝑠𝑗𝑕ℎ𝑢 Theoretical prediction for position dependency of a halved coil as a horizontal BPM should be independent of the vertical beam position and the other way round Theoretical prediction signal response for a halved coil: a 𝑦 = 𝜌 𝑆 2 − 𝑏 2 Δ𝑉 1/2 Δ𝑉 1/2 2 = 𝜌 𝑆 2 − 𝑏 2 𝑦 Σ𝑉 1/2 2 Σ𝑉 1/2 Mitglied der Helmholtz-Gemeinschaft R (linear for the x direction) (R radius of the coil, a radius of the toroid) 28. September 2015 10

  11. Technical Approach 1. Step: Development of a coil with Development of a testbench and measurements two segments (BPM in one dimension) with this coil as an horizontal BPM at COSY COSY 2. Step: Development of a coil with Installation of two Rogowski coils as horizontal four segments (BPM in horizontal and and vertical BPMs at COSY vertical direction) Mitglied der Helmholtz-Gemeinschaft 28. September 2015 11

  12. Technical Approach 3. Step: Characterise the horizontal Rogowski BPM and the horizontal and vertical Rogowski BPM in the laboratory horizontal Rogowski horizontal & vertical BPM Rogowski BPM 4. Step: Development of a nitrogen or liquid helium cooled coil with four segments (BPM in vertical and horizontal dimension) COSY Mitglied der Helmholtz-Gemeinschaft 5. Step: Development of a SQUID-BPM test bench 28 September 2015 12

  13. Rogowski BPM for RF Wien Filter Installation between quadrupoles • No COSY BPM next to it • Installation of Rogowski Coil BPMs at both ends • Position beam in center and parallel to Wien Filter E- and B- Field region Mitglied der Helmholtz-Gemeinschaft 28. September 2015 13

  14. Measurement Setup Amplifier Left (13.5 dB) Amplifier Right (13.5 dB) Data COSY RF Acquisition (Reference Signal) (PC) • Unpolarised, bunched deuteron beam (N ~10 9 ), Mitglied der Helmholtz-Gemeinschaft • Momentum 970 MeV/c, revolution frequency 750 kHz • Horizontal or vertical orbit bump after 33 seconds 28 September 2015 14

  15. Measurement horizontal Displacement • Measurement of the induced voltages every 4.45 ms for each part of the Rogowski coil • Create different horizontal orbit bumps with two correctors • Calculate the displacement as difference of the reference orbit and the orbit bump Horizontal beam position Cycle 1 Cycle 2 Displacement 2 Displacement 1 Displacement 1 Mitglied der Helmholtz-Gemeinschaft Fill Bump 1 Fill Bump 2 Fill Bump 1 Time 1 Run 28 September 2015 15

  16. Analyse Procedure 2. Interval Position determination: 𝑦 = 𝜌 𝑆 2 − 𝑏 2 Δ𝑉 1/2 2 Σ𝑉 1/2 Δ displacement Coil Parameters: 1. Interval R = 40mm Preliminary a = 5 mm Mitglied der Helmholtz-Gemeinschaft • Define an interval of 1000 data points (4.45s) for the reference orbit (1. Interval) and the orbit bump (2. Interval) • Calculate the Δd isplacement for each measurement 28 September 2015 16

  17. Analyse Procedure Fit function: 𝑏 + 𝐵 ⋅ sin (2𝜌𝑔𝑢 + 𝜒) Looking for 𝑏 𝜏 𝑦,𝑊𝑝𝑚𝑢𝑏𝑕𝑓 = 𝜌 1 2 + 4𝑉 2 𝑆 2 − 𝑏 2 2 𝜏 𝑉2 ≈ 3𝜈𝑛 2 𝜏 𝑉 𝜏 𝑉 ≈ 0.1 𝜈V 4𝑉 1 𝑉 2 + 𝑉 1 2 2 1. Interval 2. Interval Mitglied der Helmholtz-Gemeinschaft Fit: 𝜏 𝑏 ≈ 0.1 𝜈𝑛 (statistical error) 28 September 2015 17

  18. Beam oscillation or mechanical vibrations? Beam position oscillation with 6 Hz • The source of this oscillation is unknown until now • With the standard COSY BPM system it is not possible to disentangle the oscillation Mitglied der Helmholtz-Gemeinschaft 28 September 2015 18

  19. Displacement variation from cycle to cycle Determine the variation of the displacement from cycle to cycle with constant magnet settings Beam position Displacement 1 Displacement 1 Δ𝑒 Δ𝑒 = Δ𝑄 2 − Δ𝑄 1 Fill Bump 1 Fill Bump 1 Mitglied der Helmholtz-Gemeinschaft Time Cycle 1 Cycle 2 𝜏 𝑤𝑏𝑠 = 10 𝜈𝑛 28. September 2015 19

  20. Varying Horizontal Corrector Strength 2 2 𝜏 𝑦,𝑡𝑢𝑏𝑢 = 𝜏 𝑦,𝑡𝑢𝑏𝑢 + 𝜏 𝑤𝑏𝑠 ≈ 10 𝜈𝑛 Slope −512.0 ± 0.4 𝜈𝑛/% Preliminary Mitglied der Helmholtz-Gemeinschaft Theoretical expectation is consistent with the horizontal orbit measurmenet at the accelerator 28. September 2015 20

  21. Measurement horizontal beam dis- placement in denpendency of a vertical orbit bump Vertical beam position Changing the vertical Displacement 1 Displacement 1 orbit position with two vertical correctors Fill Bump 1 Fill Bump 1 Time Horizontal beam position Measurement of the horizontal beam position Mitglied der Helmholtz-Gemeinschaft Fill Bump 1 Fill Bump 1 Time 28. September 2015 21

  22. Horizontal orbit measurement with vertical corrector bump 2. Interval 1. Interval Determine the horizontal Δ𝑒𝑗𝑡𝑞𝑚𝑏𝑑𝑓𝑛𝑓𝑜𝑢 between the intervals Mitglied der Helmholtz-Gemeinschaft for the different verical orbit bumps The measured horizontal beam position should be independent of the vertical beam poisition 28. September 2015 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend