design and development of a marine current energy
play

DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM - PowerPoint PPT Presentation

DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM USING HYBRID VERTICAL AXIS TURBINE MD. JAHANGIR ALAM MASTER OF ENGINEERING FACULTY OF ENGINEERING AND APPLIED SCIENCE MEMORIAL UNIVERSITY OF NEWFOUNDLAND (MUN)


  1. “ DESIGN AND DEVELOPMENT OF A MARINE CURRENT ENERGY CONVERSION SYSTEM USING HYBRID VERTICAL AXIS TURBINE ” MD. JAHANGIR ALAM MASTER OF ENGINEERING FACULTY OF ENGINEERING AND APPLIED SCIENCE MEMORIAL UNIVERSITY OF NEWFOUNDLAND (MUN) ST.JOHN’S, NL, A1B3X5, CANADA.

  2. Agenda ������ � Ocean Currents � Marine Current Energy Conversion System � Thesis Objective � Prototype Design � Flume Tank Test and Test Results � Experimental Energy Conversion System � Conclusions 1

  3. Ocean/Marine Currents �������������� Horizontal movement of the Ocean water known as Ocean currents. Mainly three types- I. Tidal Currents II. Wind driven Currents III. Gradient (Density) Currents Estimated total power = 5,000 GW Power density may be up to 15kW/m 2 Fig: Labrador Current 2

  4. Tidal Currents �������������� � Vertical rise and fall of the water known as Tides � Due to the gravitational attraction of the moon and sun � Tidal Cycle of 12.5 Hours Fig: Tides ( due to Gravitational Attraction ) 3

  5. Gulf Stream +THC or Great Conveyor Belt �������������� 4

  6. North Atlantic current (Near St. John’s) �������������� Water Depth (m) Average Water Flow (m/s) 20 0.146 45 0.132 80 0.112 Near Bottom 0.07 Table: Ocean Current Speeds (for different depths) at different areas of St. John’s, NL 5

  7. Marine Current Energy Conversion System ����� Power Electronic Converter Generator Turbine Gearbox Battery Mechanical Conversion Electrical Conversion Figure: Marine Current Energy Conversion System (MCECS) 6

  8. Thesis Objective (As a part of ONSFI Project) � Design and Development of a low cut-in speed turbine for SEAformatics pods. � System testing in a deep sea condition. � Design and Development of Signal Condition circuits for the generated power. � Maximum Power Point Tracker development for the designed conversion system. 7

  9. Ocean Current Turbines �������� Types of Turbine: (According to OREG) Fig. II: Horizontal Axis Fig. I: Vertical Axis I. Vertical Axis Turbines II. Horizontal Axis Turbines III. Reciprocating Hydrofoils Fig. III: Reciprocating Hydrofoils 8

  10. Commercial Application �������� Fig: Vertical axis (Blue Energy) Fig: Reciprocating Hydrofoil (Engineering Business Ltd.) ** High cut-in speed ** Turbine Rotation Fig: Horizontal axis (MCT Ltd.) 9

  11. Vertical Axis Turbines �������� Vertical-axis turbines are a type of turbine where the main rotor shaft runs vertically. Types: 1. Savonius Type (Drag Type) (1) Savonius type 2. Darrieus Type (Lift Type) I. Egg Beater Type II. H-Type Gorlov, Squirrel cage etc. i. Egg Beater Type i. H-Type [ Turbine rotation is irrespective to the direction of fluid flow] (2) Darrieus type 10

  12. Comparison �������� Savonius Type: Adv.: High Starting Torque Dis.: Low Tip Speed Ratio (TSR ≈<1), Low Efficiency Darrieus Type: Adv.: High TSR (>1), High Efficiency Dis.: Low start-up characteristics TSR ( λ ) = (Blade Tip Speed/ Water Speed)= ( ω R/V) 11

  13. Advantages of a Hybrid Turbine Design �������� � Flexibility to meet specific design criteria � Knowledge of conventional rotors � Simple in structure � Easy to build 12

  14. Prototype Design

  15. Possible Combinations ���������������� Fig: Type A Fig: Type B 14

  16. Selected Prototype ���������������� Fig: Hybrid Model (CAD View) Fig: Hybrid Model (Final product) Solidity Ratio: ((No. of Blades * Chord Length)/Rotor dia.) 15

  17. Design Equations & Parameters ���������������� Savonius Rotor Rotor Height (H s ) 400mm Mechanical Power Output Nominal diameter of the of Hybrid Turbine, paddles (d i ) 130mm Diameter of the shaft (a) 20mm Rotor diameter (D s ) 200mm ( ) ρ 3 = × × × + P 0.5 V A C ( A - A )C Overlap ratio ( β ) 0.298 s Ps d s P d 0.08m 2 Swept area (A s ) (I) Darrieus Rotor Tip Speed Ratio (TSR), Airfoil Section NACA 0015 Number of Blades 4 ωR d Solidity Ratio [3] 0.40 λ = (II) V Rotor diameter (D d ) 1m Rotor Height (H d ) 1m 1m 2 Swept area (A d ) Chord length (C) 100mm Solidity Ratio: ((No. of Blades * Chord Length)/Rotor dia.) 16

  18. Working Principle (Hydrodynamics) ���������������� V= Water Speed ωR d Y V R V α 2 90 0 = + λ θ + λ V V 1 2 cos R   θ sin   − 1 α = tan   θ + λ cos 180 0 ө 0 0 X Counter clock 270 0 α 17

  19. Flume Tank ��������������� 8m wide x 4m deep x 22.25m long Fig: Flume Tank (MI) Fig: Turbine With Frame 18

  20. Test Setup ��������������� Magnetic Particle Load Cell Brake Gear-tooth Submerged Turbine Gear-tooth Torque Arm Sensor Fig: Torque and Speed Measurement Fig: Submerged Turbine Fig: DAQ board and Data Collection Terminal 19

  21. Test results

  22. Savonius Test Results ������������ 2.2 2 1.8 Power output, P (W) 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Water Speed,V (m/s) Fig: Two-Stage Savonius Fig: Power (P) vs. Water Speed (V) 21

  23. H-Darrieus Test Results ������������ 14 12 Power output, P (Watt) 10 8 6 4 2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Water Speed,V (m/s) Fig: Power (P) vs. Water Speed (V) 22

  24. H-Darrieus Test Results ������������ 0.14 V ( m / s ) 0.13 0.3 0.12 0.4 0.11 0.5 Power Coefficient (Cp) 0.1 0.6 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 TSR Fig: Power Coefficient vs. TSR (λ) for H-Darrieus Maximum Cp = 0.1248 @ 0.6m/s, when, TSR = 2.67 Maximum TSR = 3.09 @0.4m/s, when Cp = 0.012 23

  25. Hybrid Test Results (P vs. V) ������������ 22 20 Hybrid Savonius 18 Darrieus 16 Power output, P (Watt) 14 12 10 8 6 4 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 VIDEO Water Speed,V (m/s) Fig: Power (P) vs. Water Speed (V) for Hybrid Turbine 24

  26. Hybrid Test Results (P vs. ω ) ������������ 22 V ( m / s) 20 0.3 18 0.4 16 0.5 0.6 14 Power (Watt) 0.7 12 0.8 10 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 Turbine Speed (rad/s) Fig: Power vs. Turbine Speed ( ω ) for Hybrid Turbine 25

  27. Hybrid Test Results (C P vs. λ ) ������������ 0.16 V ( m / s ) 0.14 0.3 0.4 0.12 0.5 Power Coefficient (Cp) 0.6 0.7 0.1 0.8 0.08 0.06 0.04 0.02 0 2.5 2.6 2.7 2.8 2.9 3 3.1 TSR Fig: Power Coefficient vs. TSR (λ) for Hybrid Turbine Maximum Cp = 0.1484 @ 0.6m/s, when, TSR = 2.6794 Maximum TSR = 3.1114 @0.5m/s, when Cp = 0.0539 26

  28. Experimental Energy Conversion System

  29. Experimental Energy Conversion System ���������������� ������������� DC/DC Hybrid PM Battery Battery Converter Turbine Generator Charger Rectifier Current and Voltage Sensing PWM Control Signal Dummy Load Microcontroller Power and Voltage Calculation & PWM Duty Cycle Calculation RS232 Communication LCD Display User Interface Fig: Experimental Energy Conversion System (MPPT based) 28

  30. Maximum Power Point Tracker (MPPT) ���������������� ������������� P MPP Switch Mode P IN P OUT Source Load Power Supply 4 2 0 0 1 3 MPPT Algorithm v MPPT Control Fig. MPPT Actions (Graphical View of P & O) Fig. Basic MPPT control blocks Case dP dv Action 0 → 1 <0 <0 + 2 → 0 <0 >0 - 3 → 0 >0 <0 - 0 → 4 >0 >0 + Fig. MPPT Actions 29

  31. MPPT Algorithm (Perturbation & Observation) ���������������� ������������� Fig: MPPT Flow Chart 30

  32. Detailed Circuit Diagram ���������������� ������������� 31

  33. Main features ���������������� ������������� � Low cost microcontroller based � Less complexity � Easily extendable � Minimize the size due to less components 32

  34. Laboratory Setup ���������������� ������������� DC Supply Current Sensor Boost Converter LOAD Dummy Load Microcontroller with RS232 and LCD Display Battery 12 V 33

  35. Test Result (Boost Converter) ���������������� ������������� 222 µH MUR815 Diode 30 27 Theoretical Experimental 24 Output Voltage, Vout (V) IRL 520 1300 µF 21 MOSFET (Logic level) 18 Fig: Boost Converter 15 12 9 6 3 0 0 1 2 3 4 5 6 7 8 9 10 Input Voltage, Vin (V) Fig: V out vs. V in 34

  36. Test Result (MPPT) ���������������� ������������� PWM Signal V out Fig: Oscilloscope shots of PWM Signal and V out V V out = in I out = I 1 - D ( ) & in (1 - D) 35 ** 5 Volt/Div

  37. Conclusions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend