delta set for numerical semigroup with embedding
play

Delta Set for Numerical Semigroup with Embedding Dimension 3 David - PowerPoint PPT Presentation

Delta Set for Numerical Semigroup with Embedding Dimension 3 David Llena Carrasco Departament of Mathematics University Of Almer a International Meeting on Numerical Semigroup with Applications Levico (Trento), July 4-8, 2016 This is a


  1. Delta Set for Numerical Semigroup with Embedding Dimension 3 David Llena Carrasco Departament of Mathematics University Of Almer´ ıa International Meeting on Numerical Semigroup with Applications Levico (Trento), July 4-8, 2016

  2. This is a joint work with ◮ Pedro Garc´ ıa S´ anchez (Universidad de Granada) ◮ Alessio Moscariello (Universit` a di Catania) The talk is based in two papers: ◮ Delta Sets for numerical semigroups with embedding dimension three, arXiv:1504.02116 ◮ Delta Sets for symmetric numerical semigroups with embedding dimension three, in progress 2 / 18

  3. Numerical Semigroups with embedding dimension three The numerical semigroups we consider here have embedding dimension three. S = � n 1 , n 2 , n 3 � ⊂ N with gcd ( n 1 , n 2 , n 3 ) = 1 S = { a 1 n 1 + a 2 n 2 + a 3 n 3 | a 1 , a 2 , a 3 ∈ N ∪ { 0 }} Factorizations of an element s ∈ S Z ( s ) = { ( z 1 , z 2 , z 3 ) ∈ N 3 | with s = z 1 n 1 + z 2 n 2 + z 3 n 3 } Length of a factorization z = ( z 1 , z 2 , z 3 ) ℓ ( z ) = z 1 + z 2 + z 3 Sets of length of factorizations of s ∈ S L ( s ) = { ℓ ( z ) | z ∈ Z ( s ) } , s ∈ S 3 / 18

  4. Delta Sets Delta Set We order the set L ( s ) which is always finite L ( s ) = { l 1 < l 2 < · · · < l n } And define the Delta sets as ◮ ∆ ( s ) = { l i − l i − 1 | i = 2 , . . . , n } . ◮ ∆ ( S ) = ∪ s ∈ S ∆ ( s ) . We will focus in the set ∆ ( S ) . Geroldinger (1991) Let S be a numerical semigroup, then min ∆ ( S ) = gcd ∆ ( S ) . Set d = gcd ∆ ( S ) . There exists k ∈ N \ { 0 } such that ∆ ( S ) ⊆ { d , 2 d , . . . , kd } . 4 / 18

  5. Example Let S = � 3 , 5 , 7 � = { 0 , 3 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , . . . } In this case, except 0 , 3 , 5 , 6 , 7 , 8 , 9 , 11 , the other elements in S have more than one factorization. Z (10) L (10) = { (1 , 0 , 1) , (0 , 2 , 0) } = { 2 } Z (12) { (0 , 1 , 1) , (4 , 0 , 0) } L (12) { 2 , 4 } = = Z (14) { (0 , 0 , 2) , (3 , 1 , 0) } L (14) { 2 , 4 } = = Z (30) = { (0 , 6 , 0) , (1 , 4 , 1) , (2 , 2 , 2) , (3 , 0 , 3) , (5 , 3 , 0) , (6 , 1 , 1) , (10 , 0 , 0) } L (30) = { 6 , 8 , 10 } ∆ (10) = ∅ , ∆ (12) = { 2 } , ∆ (14) = { 2 } , ∆ (30) = { 2 } The aim of this work is to prove that ∆ ( S ) can be constructed from only two elements, and then we give and fast algorithm to compute it. 5 / 18

  6. The Betti elements and the M S group Betti elements For s ∈ S we consider a graph ◮ Vertices are elements z in Z ( s ) ◮ There exists an edge between z and z ′ if and only if z · z ′ � 0 We say that s ∈ S is a Betti element if its graph is not connected. For embedding dimension 3, #Betti( S ) ∈ { 1 , 2 , 3 } In the last example Betti( � 3 , 5 , 7 � ) = { 10 , 12 , 14 } . Z (10) = { (1 , 0 , 1) , (0 , 2 , 0) } , Z (12) = { (4 , 0 , 0) , (0 , 1 , 1) } , Z (14) = { (3 , 1 , 0) , (0 , 0 , 2) } The group associated to a numerical semigroup ◮ M S = { ( x 1 , x 2 , x 3 ) ∈ Z 3 | x 1 n 1 + x 2 n 2 + x 3 n 3 = 0 } . ◮ v 1 = (4 , − 1 , − 1) and v 2 = (3 , 1 , − 2) span M S as a group. ◮ δ 1 = ℓ ( v 1 ) and δ 2 = ℓ ( v 2 ) . 6 / 18

  7. The Euclid’s set For δ 1 and δ 2 non-negative coprime integer, define η 1 = max { δ 1 , δ 2 } , η 2 = min { δ 1 , δ 2 } , and η 3 = η 1 mod η 2 � η i � In general for i > 2 , η i + 2 = η i − η i + 1 = η i mod η i + 1 . As in Euclid’s η i + 1 algorithm. Euclid’s set Set D( η 1 , η 2 ) = { η 1 , η 1 − η 2 , . . . , η 1 mod η 2 = η 3 } , D( η 2 , η 3 ) = { η 2 , η 2 − η 3 , . . . , η 2 mod η 3 = η 4 } , D( η 3 , η 4 ) = { η 3 − η 4 , . . . , η 3 mod η 4 = η 5 } , · · · D( η i , η i + 1 ) = { η i − η i + 1 , . . . , η i mod η i + 1 = η i + 2 = 0 } . The Euclid’s set for δ 1 and δ 2 is � Euc( δ 1 , δ 2 ) = D( η i , η i + 1 ) i ∈ I 7 / 18

  8. Theorem For S = � n 1 , n 2 , n 3 � we have: � � ∆ ( s ) =∆ ( S ) = Euc( δ 1 , δ 2 ) = D( η i , η i + 1 ) s ∈ S i ∈ I Moreover, for every δ 1 � δ 2 there exists a numerical semigroup with ∆ ( S ) = Euc( δ 1 , δ 2 ) . This result does not hold true for higher embedding dimensions. Corollary As a consequence of the above result, if 1 ∈ ∆ ( S ) , then { 2 , 3 } ∈ ∆ ( S ) . This solves a conjecture proposed by Chapman in the three generated case. 8 / 18

  9. More about the Betti set for S = � n 1 , n 2 , n 3 � We know that, in our setting, M S is spanned by two vectors, say v 1 , v 2 . We going to define v 1 , v 2 ∈ M S depending on #Betti( S ) . #Betti( S ) 1 2 � n 1 , n 2 , n 3 � � s 2 s 3 , s 1 s 3 , s 1 s 2 � � am 1 , am 2 , bm 1 + cm 2 � Betti( S ) { s 1 s 2 s 3 } { am 1 m 2 , a ( bm 1 + cm 2 ) } Z ( betti 1 ) { ( s 1 , 0 , 0) , (0 , s 2 , 0) , (0 , 0 , s 3 ) } { ( m 2 , 0 , 0) , (0 , m 1 , 0) } s 1 > s 2 > s 3 m 2 > m 1 Z ( betti 2 ) { ( b , c , 0) , ( b + m 2 , c − m 1 , 0) , . . . ( b + im 2 , c − im 1 , 0) , ( b − m 2 , c + m 1 , 0) . . . ( b − jm 2 , c + jm 1 , 0) , (0 , 0 , a ) } Z ( betti 3 ) ( s 1 , − s 2 , 0) = ( + , − , 0) ( m 2 , − m 1 , 0) = ( + , − , 0) v 1 (0 , s 2 , − s 3 ) = (0 , + , − ) ( b + λ m 2 , c − λ m 1 , − a ) = ( + , + , − ) v 2 ( ℓ ( v 1 ) , ℓ ( v 2 )) ( + , + ) ( + , ?) Symmetric Symmetric 9 / 18

  10. More about the Betti set for S = � n 1 , n 2 , n 3 � The table continues with the nonsymmetric case (three Betti elements). #Betti( S ) 3 � n 1 , n 2 , n 3 � � n 1 , n 2 , n 3 � Betti( S ) { c 1 n 1 , c 2 n 2 , c 3 n 3 } Z ( betti 1 ) { ( c 1 , 0 , 0) , (0 , r 12 , r 13 ) } c 1 > r 12 + r 13 Z ( betti 2 ) { (0 , c 2 , 0) , ( r 21 , 0 , r 23 ) } Z ( betti 3 ) { (0 , 0 , c 3 ) , ( r 31 , r 32 , 0) } c 3 < r 31 + r 32 ( c 1 , − r 12 , − r 13 ) = ( + , − , − ) v 1 ( r 31 , r 32 , − c 3 ) = ( + , + , − ) v 2 ( ℓ ( v 1 ) , ℓ ( v 2 )) ( + , + ) Non-symmetric To unify the notation, we consider σ = sg( ℓ ( v 2 )) 10 / 18

  11. The idea For any x ∈ { 1 , . . . , max { δ 1 , δ 2 }} we consider the following coordinates with respect to δ 1 , δ 2 x = x 1 δ 1 + x 2 δ 2 with − δ 1 < x 2 ≤ 0 < x 1 ≤ δ 2 x = ( x 1 , x 2 ) v x = x 1 v 1 + σ x 2 v 2 x = ( x ′ 1 , x ′ x = x ′ 1 δ 1 + x ′ 2 δ 2 with − δ 2 < x ′ 1 ≤ 0 < x ′ v ′ x = x ′ 1 v 1 + σ x ′ 2 ) 2 ≤ δ 1 2 v 2 Observe that ℓ ( v x ) = ℓ ( v ′ x ) = x . And the signs of these vectors are Symmetric case Non symmetric case v ′ v ′ σ delta v x v x x x 1 (? , − , + ) (? , + , − ) δ 1 > δ 2 (? , + , − ) (? , − , + ) -1 ( + , ? , − ) ( − , ? , + ) δ 2 > δ 1 ( − , + , ?) ( + , − , ?) 11 / 18

  12. An example Let S = � 2015 , 7124 , 84940 � v 1 = (548 , − 155 , 0) , v 2 = (0 , 155 , − 13) , and so: δ 1 = 393 , δ 2 = 142 . δ 1 = 393 δ 2 = 142 (1 , 0) (1 , − 1) (1 , − 2) D( δ 1 , δ 2 ) = 393 251 109 (0 , 1) ( − 1 , 3) D( δ 2 , δ 3 ) = 142 33 (1 , − 2) (2 , − 5) (3 , − 8) (4 , − 11) D( δ 3 , δ 4 ) = 109 76 43 10 ( − 1 , 3) ( − 5 , 14) ( − 9 , 25) ( − 13 , 36) D( δ 4 , δ 5 ) = 33 23 13 3 (4 , − 11) (17 , − 47) (30 , − 83) (43 , − 119) D( δ 5 , δ 6 ) = 10 7 4 1 ( − 13 , 36) ( − 56 , 155) ( − 99 , 274) ( − 142 , 393) D( δ 6 , δ 7 ) = 3 2 1 0 Euc( δ 1 , δ 2 ) = { 1 , 2 , 3 , 4 , 7 , 10 , 13 , 23 , 33 , 43 , 76 , 109 , 142 , 251 , 393 } . 12 / 18

  13. The same example with vectors Recall that S = � 2015 , 7124 , 84940 � v 1 = (548 , − 155 , 0) , v 2 = (0 , 155 , − 13) , and so: δ 1 = 393 , δ 2 = 142 . (548 , − 155 , 0) (548 , − 310 , 13) (548 , − 465 , 26) 393 251 109 (0 , 155 , − 13) ( − 548 , 620 , − 39) 142 33 (548 , − 465 , 26) (1096 , − 1085 , 65) (1644 , − 1705 , 104) (2192 , − 2325 , 143) 109 76 43 10 ( − 548 , 620 , − 39) ( − 2740 , 2945 , − 182) ( − 4932 , 5270 , − 325) ( − 7124 , 7595 , − 468) 33 23 13 3 (2192 , − 2325 , 143) (9316 , − 9920 , 611) (16440 , − 17515 , 1079) (23564 , − 25110 , 1547) 10 7 4 1 ( − 7124 , 7595 , − 468) ( − 30688 , 32705 , − 2015) ( − 54252 , 57815 , − 3562) ( − 77816 , 82925 , − 5109) 3 2 1 0 ∆ ( S ) = { 1 , 2 , 3 , 4 , 7 , 10 , 13 , 23 , 33 , 43 , 76 , 109 , 142 , 251 , 393 } . 13 / 18

  14. The inclusion Euc( δ 1 , δ 2 ) ⊆ ∆ ( S ) In the above example take, for instance, 43 ∈ Euc( δ 1 , δ 2 ) : v 43 = (1644 , − 1705 , 104) Then, we consider 1705 · n 2 ∈ S = � 2015 , 7124 , 84940 � , to obtain that: (1644 , 0 , 104) and (0 , 1705 , 0) are two factorizations of 1705 · n 2 with difference of lengths equal to 43. Remain to prove that there is no other factorization of the element with length between them. ℓ (0 , 1705 , 0) = 1705 < 1748 = ℓ (1644 , 0 , 104) Big problem!! All these element have same length: ℓ ( v ) = 43 v = v 43 + r · v 0 with r ∈ Z 14 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend