decarbonizing mobility
play

Decarbonizing Mobility Prof. Dr. Thomas Bernauer | | Institute of - PowerPoint PPT Presentation

Decarbonizing Mobility Prof. Dr. Thomas Bernauer | | Institute of Science, Technology and Policy GHG Emissions from Transport Source: EASAC policy report 37, March 2019 | | Institute of Science, Technology and Policy Prof. Dr. Thomas


  1. Decarbonizing Mobility Prof. Dr. Thomas Bernauer | | Institute of Science, Technology and Policy

  2. GHG Emissions from Transport Source: EASAC policy report 37, March 2019 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 2

  3. Growing Travel and Transport Demand Source: EASAC policy report 37, March 2019 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 3

  4. Challenges and Opportunities § EU target is to reduce GHG emissions from transport by 60% against the 1990 baseline by 2050 § Decarbonizing supply (electrification, hydrogen, …) § Limiting demand § Road transport, and in particular passenger cars and light-duty vehices, is the biggest challenge in terms of magnitute of emissions and regulatory politics § Biggest supply and demand side challenges and opportunities in urban centers | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 4

  5. Switzerland | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 5

  6. Switzerland https://www.bafu.admin.ch/bafu/de/home/themen/klima/mitteilungen.msg-id-78720.html | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 6

  7. Switzerland https://www.newsd.admin.ch/newsd/message/attachments/57697.pdf | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 7

  8. Switzerland | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 8

  9. Supply-Side Policy Goals § Replace internal combustion engines with electric engines (battery-electric vehicles, fuel cell vehices) – it takes about 20 years to renew the current vehicle fleet – currently less than 3% low-carbon vehicle sales in EU § Decarbonize electricity supply while decarbonizing vehicles § Create seamless and high-capacity multi-modal public transport options, one key-faced of which is the last mile - problem § Increase use of non-motorized mobility (bicycles, scooters, walking, etc.), particularly in urban centers | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 9

  10. Demand-Side Goals § Reverse common government policy that “curbing mobility is not an option” § Options: § Mobility pricing / increasing the cost of mobility across the board § More home-office, more video conferencing § Public awareness campaigns § Shifting demand to low carbon modes of transport (this might limit mobility growth, but not reduce mobility) | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 10

  11. The Effectiveness – Opposition/Acceptance Dilemma Effectiveness (GHG emission cuts) Which policies are • Effective in reaching certain societal goals • Economically efficient (cost- benefit ratio) • Politically feasible Citzen / consumer opposition | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 11

  12. Let’s Focus on Battery Electric Vehicles (BEV), one of they key options for decarbonizing individualized mobility | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 12

  13. More and More Electric Cars on Swiss Roads https://www.watson.ch/leben/auto/154716102-9-grafiken-und-statistiken- zum-elektroauto-in-der-schweiz-2018 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 13

  14. In International Comparison… Data sources: EAFO, OECD | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 14

  15. … Switzerland Has a Long Way to Go! Data sources: EEA 2017, EAFO 2017 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 15

  16. Key Obstacles to BEV Ownership § Concerns of consumers § Higher purchase price (up front investment) § Range / driving distance § Charging (duration, temporal and spatial availability, inconvenience) § Security and environmental concerns § Limited choice of car, model, etc. § Weak government incentives in Switzerland § Only few cantons use purchase subsidy (e.g. Ticino, Thurgau, Valais) § Very limited tax breaks § Parking privileges for BEV very rare (green zones) § Fairly large public charging network, but little awareness of it | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 16

  17. Some Insights from Our Research at the ISTP 1. Who owns a BEV? 2. Could better information on BEVs and test drives increase acceptance/attractiveness? 3. How do current BEV owners charge their vehicles, and what are the challenges in strongly increasing the BEV share in the country’s vehicles fleet? | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 17

  18. 1. Who Owns a BEV? § Survey of all BEV owners and a random sample of non-BEV owners in the cantons of Aargau, Schwyz, Zug und Zürich § Survey in Summer 2018 (Brückmann and Bernauer 2020) § N = 5’325, of 22’627 invited persons | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 18

  19. 1. Who Owns a BEV? § One-person households § Households with more than one car § Higher-income households with home-ownership § Stronger environmental attitudes and tech affinity § Live close to public charging infrastructure § Politically middle-to- left/green position Brückmann, Willibald, Blanco 2020 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 19

  20. 1. Who Owns a BEV? § To increase the BEV share strongly, policies serving larger, less affluent households, households with one car, and non-home owners are needed. § Public charging infrastructure needs to be expanded very strongly § Our survey research shows strong public support for such expansion, but much less so for BEV purchase subsidies (Brückmann and Bernauer 2020) | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 20

  21. 2. Can More Information and Test-Drives Increase Acceptance? § Effects of 1. Test-driving and information 2. Information on a. Perception of BEV b. Purchasing intentions c. Policy preferences concerning BEVs experimental Follow up Follow up Baseline survey treatment survey 1 survey 2 summer 2018 autumn 18 - spring 2019 spring 2019 spring 2020 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 21

  22. 2. Information Treatment § Energy efficiency § Environmental Informationen zu Elektroautos impacts Energieeffizienz Elektromotoren haben einen Wirkungsgrad von rund 90%, Benzin- und Dieselmotoren einen § Range Wirkungsgrad von rund 30%. Das heisst, dass bei Elektroautos 90% der eingesetzten Energie (Strom) zur Fortbewegung verwendet werden kann. Bei Benzin- oder Dieselautos sind es nur 30% (siehe Bild unten). Elektroautos brauchen Reichweite von Elektroautos Ladezeiten somit viel weniger Energie pro Kilometer als § Charging stations Benzin- oder Dieselautos. Die Reichweite von Elektroautos Die Ladezeit eines Elektroautos ist abhängig von der Kapazität hängt vom Ladestand, der Kapa- der Batterien. Kompaktere, zität der Batterie (in kWh) und der günstigere Elektroautos haben technischen Ausrüstung des kleinere Batterien und Reichwei- Autos und der Ladevorrichtung ten von 200 km im alltäglichen ab. Der schwächste Faktor in § Charging times Gebrauch. Grössere und teurere dieser Kette bestimmt die Lade- Elektroautos haben Reichweiten von bis zu 500 km dauer. Wirkungsgrad in der Praxis. Dabei beeinflusst der Fahrstil die 90% 30% Reichweite eines Elektroautos, da durch langsame- Beispiele für Ladezeiten res und vorrausschauendes Fahren und den mass- vollen Gebrauch von Heizung und Klimaanlage viel Umweltauswirkungen § Costs Energie gespart werden kann. Zusätzlich kann beim Durchschnittliche CO 2 -Emissionen sind hauptverantwortlich für den Bremsen und (bergabwärts) Rollen die Batterie Ladevorrichtung Ladedauer um 80% Klimawandel. Der Verkehr trägt rund 30% zu den wieder aufgeladen werden. der Batterie zu laden gesamten CO 2 -Emissionen der Schweiz bei. Die CO 2 -Emissionen von Elektroautos sind über ihre Haushaltssteckdose 8 -14 Std. Ladestationen gesamte Lebensdauer gerechnet (Herstellung, Betrieb, Entsorgung) um mindestens 60% gerin- In der Schweiz wird das Netz Ladung zuhause mit § Comparison to ICE ger als die CO 2 -Emissionen eines vergleichbaren öffentlicher Ladestationen Installation einer speziel- 4 Std. Benzin- oder Dieselautos. Voraussetzung dafür immer dichter. Ladestationen len Ladestation ist, dass der Strom für Elektroautos aus erneu- sind leicht über Navigationsgerä- erbaren Energiequellen stammt. Dies ist in der te, Apps und im Internet zu Öffentliche Ladestation 1 Std. Schweiz gut möglich. Zudem stossen Elektroautos Schild für Elektroauto- finden. Beispiele für Websites Ladestation auf cars keine Abgase aus und belasten dadurch die Luft- Öffentliche mit Ladestationen sind Nationalstrassen Unter 1 Std. Schnellladestation qualität nicht. Ausserdem verursachen sie deut- https://e-mobile.ch/de/elektro-tankstelle-finden lich weniger Lärm als Benzin- und Dieselautos. oder https://chargemap.com/map § N = 1097 | | Institute of Science, Technology and Policy Prof. Dr. Thomas Bernauer 20.04.20 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend