de dem s solu lutions ns f for o oil l ga gas and nd c
play

DE DEM s solu lutions ns f for O Oil & l & Ga Gas, , - PowerPoint PPT Presentation

Oil, Gas and Chemical CFD Conference November 4-5, 2014 DE DEM s solu lutions ns f for O Oil & l & Ga Gas, , and nd C Che hemi mical i l ind ndustries Oleh eh B Baran Outli line ne DE DEM f for mo modeli ling


  1. Oil, Gas and Chemical CFD Conference November 4-5, 2014 DE DEM s solu lutions ns f for O Oil & l & Ga Gas, , and nd C Che hemi mical i l ind ndustries Oleh eh B Baran

  2. Outli line ne DE DEM f for mo modeli ling ng r rock d k drilli lling ng – Breaking rock challenges – Relevant capabilities in STAR-CCM+ – Example without coupling to fluid flow – Using overset mesh to model drill-bit motion DE DEM f for mo modeli ling ng f flo low o of s soli lids i in f n flu luidized b beds – Coarse-grain model in STAR-CCM+ – Industrial scale fluidized bed example • Simulation results for large particle size distribution Summa mmary y 2

  3. Rock C k Cutting ng C Comple lexity y Rock c k cutting ng: : – Complex non-equilibrium and non- steady-state processes – Wide range of length-scales • From grain scale • To bore-hole / reservoir dimensions – Wide range of time-scales • From sound waves period in solids • To hours of advancing drill-bit through inhomogeneous rock Can nu n nume merical mo l modeli ling ng he help lp? – In improving drill-bit design – In optimizing operation parameters (rpm, ROP, WOB) – Reduce bit balling 3

  4. Modeli ling ng R Rock u k using ng DE DEM DE DEM mo models ls i ind ndividuals ls g grains ns i in n Observable les rock k – Rate of penetration (or WOB) – Accurate grain scale physics – Torque • Resolution of grains-cutter contacts – Cuttings attached to drill bit • Can reproduce removing cuttings – Stand pipe pressure – Limited to smaller length scales and timescales Model c l cha halle lleng nges – Simulation time Model i l inputs – Far Boundaries – Bit Design – Calibrating model of rock • Nozzle selection – Simulating flow of drilling fluid in • Teeth configuration, etc borehole – Operation parameters – Reproducing bit balling • Weight on Bit (or ROP), RPM… – Reproducing realistic cutting flows – Rock properties 4

  5. DE DEM P Paralle llel B l Bond nds M Model i l in S n STAR-C -CCM+ The he P Paralle llel B l Bond nds mo model i l int ntroduces a attractive int nter-p -particle le f forces t to t the he p particle le s sys ystem m Model u l uses t the he c conc ncept o of a a ma massle less b bar conne nnecting ng a a p pair o of b bond nded p particle les The he b bar(bond nd) c can t n trans nsmi mit f force a and nd t torque between p n particle les a and nd i it i is a als lso s subje ject t to b breaki king ng und nder lo load – The stress limit values are calculated based on beam theory Referenc nce: : Potyond ndy, D.O , D.O, a , and nd Cund ndall ll, P , P.A .A. 2 . 2004. . “A b bond nded-p -particle le mo model f l for r rock” k”, Int , Int. J . J. R . Rock k Mecha hani nics & & M Mini ning ng S Scienc nces 4 41 p pp. 1 . 1329–1364.

  6. Dr Drilli lling ng e example le s set-u -up 6

  7. Result lts 7

  8. Moni nitoring ng a amo mount nt o of b broken b n bond nds ~75000 p particle les w with h Gaussian s Ga n size d distribution n whi hich h Particle les s settle led a and nd b bond nded with a h about 1 180000 b bond nds Bond nd s streng ngth d h distributed according ng t to Ga Gaussian n distribution ( n (with me h mean v n valu lue of b bond nd s streng ngth = h = 1 1% o of Young ng’s ’s mo modulu lus). . 8

  9. Cont ntact ne network k 9

  10. Cont ntact c colo lored b by ‘B y ‘Bond nd S State’ ’ 10

  11. Modelli lling ng d drilli lling ng f flu luid Possible le i in la n latest v version 9 n 9.0 .06 because o of c compatibili lity o y of DE DEM with O h Overset M Mesh h 11

  12. Result lts w with o h overset me mesh h Rock i k is p perme meable le w with v h void fraction = n =0.4 .4 Solu lution f n for d drilli lling ng f flu luid f flo low w was obtaine ned u using ng 2 2-w -way c y coupli ling ng mo model l Jet f flo low f form no m nozzle les r result lts i in n la large d drag f forces o on b n bond nded g grains ns 12

  13. After d drilli lling ng – – b before C Che hemi mical p l processing ng 13

  14. Industrial S Ind l Scale le F Flu luidized B Bed S Study y outlet d=0.1 m 3 m d=0.6 m distributor 0.46 m Mesh size 0.4 m 20 mm air inlet 14

  15. Amo mount nt a and nd s size d distribution o n of p particle les Fines: Coarse particles: Mass:~ 108 kg Mass:~ 108 kg Diameter: ~500 microns Diameter: ~1mm Count: ~716,000,000 Count: ~80,000,000 15

  16. Coarse Gr Grain P n Particle le DE DEM p parcel r l represent nts s some me nu numb mber o of i ident ntical u l unr nresolv lved p particle les parce rcel l part rticle icles s ​𝒆 ​𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 𝒎 ¡ 𝒆 � 𝒎 ≥𝟐 ​𝒎↑ 𝟒 -nu ​𝒎 -numb mber o of p particle les i in p n parcel l Flu luid-p -particle le i int nteraction ( n (drag, li , lift e etc.) .) a are c calc lcula lated f for a a represent ntative p particle le a and nd a appli lied t to t the he e ent ntire p parcel l – while the contact dynamics are calculated on the parcel scale Faster DEM computing time 16

  17. Coarse Gr Grain De n Details ls Example le f for Gi Gidaspow d drag f force c calc lcula lation n ​𝑫↓𝒆 𝑫↓𝒆 = {█□​ 𝟓 / 𝟒 (​ 𝟐𝟔𝟏 𝟐𝟔𝟏 ( 𝟐− ​𝜷↓𝒒 𝜷↓𝒒 )/​𝜷↓𝒒 𝜷↓𝒒 𝑺​𝒇↓𝒒 𝒇↓𝒒 +𝟐.𝟖𝟔 𝟖𝟔 ) ; ¡ ¡ ¡ ¡ ¡ ¡if ¡ ¡ ¡ ​𝜷↓𝒒 𝜷↓𝒒 < ​𝜷↓𝒏𝒋𝒐 𝜷↓𝒏𝒋𝒐 ;𝐅𝐬𝐡 𝐅𝐬𝐡𝐯𝐨 ¡ 𝐟𝐫𝐯 𝐫𝐯𝐛𝐮𝐣𝐩𝐨 𝐩𝐨 ¡𝐜𝐛 𝐜𝐛𝐭𝐟𝐞 @​ 𝟑𝟓 𝟑𝟓+𝟒.𝟕 𝑺​𝒇↓𝒒 𝒇↓𝒒↑ 𝟏.𝟕𝟗𝟖 𝟕𝟗𝟖 /𝑺​𝒇↓𝒒 𝒇↓𝒒 ​𝜷↓𝒒 𝜷↓𝒒↑ −𝟒.𝟕𝟔 𝟕𝟔 ; ¡ ¡ ¡ ¡ ¡ ¡if ¡ ¡ ¡ ¡ ​𝜷↓𝒒 𝜷↓𝒒 ≥ ​ 𝜷↓𝒏𝒋𝒐 𝜷↓𝒏𝒋𝒐 ; ¡ ¡𝐗𝐟 𝐗𝐟𝐨 ¡𝐙𝐯 𝐙𝐯 ¡𝐧𝐩𝐞 𝐩𝐞𝐟𝐦 ¡ ¡ ¡ ¡ ¡ ¡ ¡ – Here ​𝛽↓𝑞 is solid void fraction, ​𝛽↓𝑛𝑗𝑜 is the cutoff void fraction (=0.8), ​𝑆𝑓↓𝑞 is the particle Reynolds number, 𝑒 is particle diameter ​𝐺↓𝑒𝑠𝑏𝑕 (𝑞𝑏𝑠𝑑𝑓𝑚) = ​𝑚↑ 3 ​ 𝟐 / 𝟑 ​𝝇↓𝒈 𝝇↓𝒈 ​𝒘↑ 𝒘↑ 𝟑 ​𝑫↓𝒆 𝑫↓𝒆 ​𝑩↓ 𝑩↓𝒆 - this drag force is applied to parcel containing ​𝑚↑ 3 particles, as a result: Acceleration, velocity and displacement of parcels due to scaled drag is similar to acceleration, velocity and displacement and of fine particles due to original unscaled drag force 17

  18. Parcel S l Size d distribution n Fine: 𝒎 =𝟐𝟗 𝟐𝟗; ¡ ¡ ¡ ​𝒎↑ 𝒎↑ 𝟒 =𝟔,𝟗𝟒𝟑 𝟗𝟒𝟑 Fine: 𝒎 =𝟑𝟓 𝟑𝟓; ¡ ¡ ¡ ​𝒎↑ 𝒎↑ 𝟒 =𝟐𝟒 𝟐𝟒,𝟗𝟑𝟓 𝟗𝟑𝟓 ​𝒆 ​𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 9 mm; ​ ​𝒆 ​𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 12 mm; ​ 𝑶↓ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 109,000 𝑶↓ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 46,000 Coarse: 𝒎 =𝟐𝟗 𝟐𝟗; ¡ ¡ ¡ ​𝒎↑ 𝒎↑ 𝟒 =𝟔,𝟗𝟒𝟑 𝟗𝟒𝟑 Coarse: 𝒎 =𝟐𝟑 𝟐𝟑; ¡ ¡ ¡ ​𝒎↑ 𝒎↑ 𝟒 =𝟐,𝟖𝟑𝟗 𝟖𝟑𝟗 18 ​𝒆 ​𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 18 mm; ​ ​𝒆 ​𝒆↓𝒒𝒃𝒔𝒅𝒇𝒎 = 12 mm; ​ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝑶↓ 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 14,000 𝑶↓ 𝑶↓𝒒𝒃𝒔𝒅𝒇 𝒒𝒃𝒔𝒅𝒇𝒎 𝒎 = 46,000

  19. Size Di Distribution C n Correction t n to P Pressure Dr Drop ( (The heory) y) les ​𝑒 ​𝑒 W We d define ne t the he me mean s n size o of p particle – Equivalent mono-disperse system provides the same total surface area ​𝑒 = ​∑ ​𝑒 ​∑𝑗 =1 =1 ↑​𝑂 ​𝑂↓𝑞𝑏𝑠𝑑𝑓 𝑑𝑓𝑚𝑡 ▒​𝑚 ​𝑚↓𝑗↑ 3 ​𝑒 ​𝑒↓𝑗↑ 3 /∑𝑗 /∑𝑗 =1 =1 ↑​𝑂 ​𝑂↓𝑞𝑏𝑠𝑑𝑓 𝑑𝑓𝑚𝑡 ▒​𝑚 ​𝑚↓𝑗↑ 3 ​𝑒 ​𝑒↓𝑗↑ 2 drop 𝛼𝑄 𝛼𝑄 f The he f frictiona nal p l pressure d for b f for b bed w bed w with s with s h size d h size d distribution distribution n n − ​𝛼 ​𝛼𝑄/𝑀 =150 =150 ​( ​( 1− 1− ​𝛽 ​𝛽 ↓𝑞 )↑ )↑ 2 /​𝛽 ​𝛽 ↓𝑞 ↑ 3 ​𝜈 ​𝜈↓𝑔 𝑣/​𝑒 ​𝑒 ↑ 2 +1.75 +1.75 ​( ​( 1− 1− ​𝛽 ​𝛽 ↓𝑞 )/ )/​𝛽 ​𝛽 ↓𝑞 ↑ 3 ​ 𝜍↓𝑔 ​𝑣 ​𝑣↑ 2 /​𝑒 ​𝑒 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend