d frekers
play

D. Frekers Charge-exchange reactions GT-transitions, -decay and - PowerPoint PPT Presentation

D. Frekers Charge-exchange reactions GT-transitions, -decay and Flux @ 1 AU [cm -1 s -1 MeV -1 )] for lines [cm -1 s -1 ] 1012 pp 1010 things beyond 13N 108 15O 106 17F 8B 104 7Be pep hep 102 0.1 0.2 0.5 1


  1. D. Frekers Charge-exchange reactions GT-transitions, ββ -decay and β ν Flux @ 1 AU [cm -1 s -1 MeV -1 )] for lines [cm -1 s -1 ] 1012 pp 1010 things beyond 13N 108 15O β ν 106 17F 8B 104 7Be pep hep 102 0.1 0.2 0.5 1 2 5 10 20 neutrino energy [MeV]

  2. Outline  Chargex-reactions ( 3 He,t) & (d, 2 He)  highlights & features of 2νββ nuclear matrix elements (NME) 76 Ge, 82 Se, 96 Zr, 100 Mo, 136 Xe fragmentation – smallest/largest NME  the 0νββ decay nuclear matrix elements 1 st forbidden NME‘s and 2 − states ν  solar SNU rates and ( 3 He,t) reaction 71 Ga( 3 He,t), 82 Se( 3 He,t) 30 min  the A=96 system the 96 Zr ( β− )  96 Nb Q-value and a direct test of 0νββ NME

  3. β − β − decay never 0 + EC (odd-odd) 0 + (Z+1,N-1) (even-even) β − (Z,N) β − β − neutron-rich 0 + (even-even) (Z+2,N-2) 2 2νβ − β − decay: Γ = × ( ) NME ph-spc − ≈ 19 21 allowed T 10 y 5-body 12 2 2 2 2 3 × ∑ 0νβ − β − decay: Γ = Γ = × × × 2 m ( ( ) ) NME NME U m ph-spc ph-spc ν e ei i = > 24 any degree any degree i 1 3-body 3-body T 10 y 12

  4. recall: neutrino mass problem 2 3 ⋅ ∑ 2 Γ ∝ 2 NME U m ei i = i 1 − Φ − Φ i i = ⋅ U V e e 2 extra Majorana-Phases diag( 1 , 2 , 1)  − δ  i   c c c s s e V V V  12 13 13 12 13  e 1 e 2 e 3   − δ − δ   = = − − i − i   V V V V c s c s s e c c s s s e c s α µ µ µ i 1 2 3 23 12 12 13 23 12 23 12 13 23 13 23     − δ − δ   − i − − i   V V V s s c c s e c s c s s e c c τ τ τ   1 2 3 12 23 13 23 13 12 23 23 12 13 13 23 Θ = ± → ≈ π 0.6 0.1 6 12 known quantities: Θ = ± → ≈ π 0.7 0.2 4 23 Θ = 0.11 13 − ∆ 2 = 2 − 2 ≈ × 3 2 ≈ 2 m m m 2.6 10 eV (0.05eV) atm 3 2 − ∆ 2 = 2 − 2 ≈ × 5 2 ≈ 2 m m m 7.9 10 eV (0.009eV) sol 2 1

  5. neutrino-mass-scenarios: 1) degenerate: ≈ m 0.2 eV ν e m ν the best of all cases m 1 m 2 m 3 2 2 3 m − Φ −Φ − δ −Φ 2) normal hierarchy: ∝ ∆ 2 × + 2 ( i ) + < 2 ( i ) 1 m m e 2 1 ( 0.5) e 1 ν sol ∆ e m sol m 3 m ν for: = ZERO!! π 3 m Θ ° Φ − Φ = = 1 m 2 ฀ 9 ( ) 1 m 1 13 2 1 ∆ 2 m sol 2 2 e − Φ −Φ ∝ ∆ 2 × + 2 ( i ) 3) inverted hierarchy: m m 3 2 1 ν atm e if inverted hierarchy could be established m 2 m ν m 1 (LHC, SN- ν , precision-oscillation) THEN: ≈ ∆ m m ν atm m 3 e or neutrino is a Dirac-particle

  6. N ucl. M atrix E lements 2νβ − β − decay q-transfer like in ordinary β -decay (q ~ 0.01 fm -1 ~ 2 MeV/c) i.e. only allowed transitions possible

  7. !! 4 ć ö 2 C G g ç ÷ n n ( ) 2 2 2 F A ç ÷ G = Q Q F cos( ) M f( ) ç ÷ - - - C ( ) DGT b b ( ) 7 ç ÷ č ř p 2 8 2 n n 2 ( 2 ) = G (Q,Z) M DGT 10 3 ≈ − -2 exp MeV Q Z 11 2 ∝ ⋅ extracted from half-life favorable: 1. high Q-value 2. large Z unfavorable (but cannot be changed): 1. large neutron excess (Pauli-blocking) p p n n

  8. - + + - (f) (i) å å s t s t 0 1 1 0 g .s . k k m m k k g .s . k k n ( 2 ) å = M DGT + (f) 1 + - Q (0 ) E(1 ) E m bb g .s . m 0 2 ( ) ( ) + - M GT M GT m m å = E m m to remember: 1. 2 sequential & „allowed“ β − -decays of „Gamow-Teller“ type 2. „1, 2, 3, ... forbidden“ decays negligible 3. Fermi–transitions do no contribute (because of different isospin-multiplets) Can be determined via charge- exchange reactions in the (n,p) and (p,n) direction ( e.g. (d, 2 He) or ( 3 He,t) )

  9. N ucl. M atrix E lements 0νβ − β − decay neutrino is a virtual particle q~0.5fm -1 (~ 100 MeV/c) D q × D x (due to Heisenberg ) ~ 1 degree of forbiddeness is lifted

  10. !! 2 2 ć ö g 2 ç ÷ n n n n 0 0 4 ( 0 ) ( 0 ) V G = - ç G (Q,Z) g M ÷ M m - - n A ç ÷ DGT DF b b ç ÷ ( ) č ř g e A mass of theory Q Z 5 4 10 ∝ ⋅ ≈ Majorana- ν ! !! largely independent of (A,Z) (except near magic nuclei) to remember: 1. „higher-fold forbidden“ transitions possible 2. Fermi–transitions important 3. „Pauli-blocking“ largely lifted 4. large Q-value, high Z important NOT (easily) accessible via charge-exchange reactions

  11. Charge-exchange reactions ∆ E/E ~ 5 x10 -5 ~ 25 keV at 420 MeV ( 3 He)

  12. Q : what is the connection between „weak στ operator“ and the hadronic reaction A : dominance of the V στ effective interaction at medium energies - (n,p), q = 0 !!

  13. 2 − 1 + 1 + 1 + d σ /d Ω (GT,q~0) ~j 0 (qR) 2 ~(1- q 2 R 2 ) 1 + 1 + 1 + 0 +

  14. 76 Ge N-Z=10 Resolution is the key !!!

  15. almost 70 !! resolved single states up to 5 MeV identified as GT 1+ transitions !!!

  16. ~ 70 !! single states up to 5 MeV !!! ???? anti-correlation ???? is the anti-correlation a property of deformation ?? 76 Ge 76 Se moderately oblate oblate/ prolate ( β 2 ~ − 0.2) ( β 2 ~ 0.1)

  17. 82 Se 3 5 . 3 0 h 0+ 5 – ฀฀ ฀฀ Q 3 0 9 2 . 6 Q 2 9 9 2 ฀฀ ฀฀ ฀฀ Q C 9 7 . 6 E N-Z=14 0+ Resolution is the key !!! possibly useful for solar neutrino detection

  18. 82 Se 10-4 yield/(5 keV msr) 2.0 8 0.076 (1 + ) 0.421 (1 + ) 1.233 (1 + ) 1.484 (1 + ) 82Se(3He,t)82Br 2.087 (1 + ) 2.136 (1 + ) 2.498 (1 + ) IAS IAS E = 420 MeV 6 ∆ E = 38 keV 1.5 4 1.766 (1 + ,2 − ) 0.0° < ฀ lab < 0.5° 0.362 (3 + ) 0.543 (2 − ) 0.764 (2 − ) 1.0° < θ lab < 1.5° 2 2.0° < θ lab < 2.5° 1.0 0 10 9.5 GTR 0.5 ~65 J π =1 + states 0 0 1 2 3 4 5 6 8 10 12 14 16 Ex [MeV] 3 isolated GT transition below 2 MeV- fragmentation recedes to GT resonance

  19. 96 Zr N-Z=16 Remember: B(GT) tot = 3(N-Z) ~ 50! B(F) = (N-Z)

  20. (d, 2 He) ( 3 He,t) =0.16 E x (MeV) B(GT-) = 0.16 B(GT+) = 0.3 Fascination: With only 1 state: νββ = ± ⋅ . 19 calc (2 ) (2.1 0.4) 10 years T 1/2 νββ = ± ⋅ exp. 19 (2 (2.3 0.2) 10 years (NEMO3-result) T 1/2

  21. 100 Mo N-Z=16 useful as SN neutrino detector (sensitive to ν temperature in SN)

  22. HERE: almost the entire 100 Mo low-E GT strength is concentrated in the g.s. entire“low-energy“ GT strength is concentrated in a SINGLE STATE and with β − log ft known ν ν ⋅ 2 2 ฀ M (g.s.) 0 88 . M (total) DGT DGT No need for GT giant resonance

  23. 64 Zn( εε, ε β + ) 76 Ge( β − β − ) 82 Se( β − β − ) 96 Zr( β − β − ) reduced fragmentation of GT strength 100 Mo( β − β − )

  24. 136 Xe N-Z=28 question: why so stable !!!

  25. 136 Xe

  26. What‘s the size of the NME? n = 2 21 × . T 2 2 10 yr − + 1 2 n ( ) 2 -1 ฀ M . 0 019 MeV DGT all signs positive —> ( ) ( ) + - - 2 » × B GT 10 B GT m m ( ) + - 3 » GT !!!! B 10 m

  27. A. Poves (simultaneous to our publication): NO CANCELLATION !! there is no B(GT + ) strength, except for lowest 1 + state 3x10 -3 Recall: 136 Xe is almost doubly magic!! Shell model provides conclusive explanation for the deemed „pathologically“ long half-life of 136 Xe. Expt‘l test: 136 Ba(d, 2 He) 136 Cs

  28. β−β− 136 Ba 136 Xe 2νββ NME is exceptionally small expmt: how does the ME scale in the case of 0νββ decay? question: could it be that: 2νββ ME is suppressed AND 0νββ ME is enhanced ???

  29. Experiments towards the 0νββ NMEs Here: 2 - states and occupation vacancy numbers via chargex reactions

  30. 40.0 Decomposition of MGT 30.0 20.0 136 Xe 10.0 0.0 1+ 2+3+ 4+ 5+6+7+ 8+ 0- 1- 2- 3- 4- 5- 6- 7- 35 ! 2 - 100 Mo gpp = 0.89 gpp = 0.96 -10.0 gpp = 1.00 gpp = 1.05 Theory: The 2 − strength makes up relative 2 − strength to ~ 5 MeV ~ 20-30% of the 0νββ ME!! Expmt: 136 Xe exhibits largest 2 − strength J. Suhonen, Phys. Lett B607, 87 (2005) 0νββ ME enhanced ?!?!

  31. (Poves) Poves

  32. Flux @ 1 AU [cm -1 s -1 MeV -1 )] for lines [cm -1 s -1 ] 1012 pp 1010 solar neutrino 13N 108 15O 106 rates via ( 3 He,t) 17F 8B 104 7Be pep 102 hep 0.1 0.2 0.5 1 2 5 10 20 neutrino energy [MeV] 71 Ga( ν  ,e − ) SNUs from 71 Ga( 3 He,t) 71 Ge charge-ex reaction

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend